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Functional Clustering of Neurons in Motor Cortex
Determined by Cellular Resolution Imaging in Awake
Behaving Mice
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Macroscopic (millimeter scale) functional clustering is a hallmark characteristic of motor cortex spatial organization in awake behaving
mammals; however, almost no information is known about the functional micro-organization (�100 �m scale). Here, we optically
recorded intracellular calcium transients of layer 2/3 neurons with cellular resolution over �200-�m-diameter fields in the forelimb
motor cortex of mobile, head-restrained mice during two distinct movements (running and grooming). We showed that the temporal
correlation between neurons was statistically larger the closer the neurons were to each other. We further explored this correlation by
using two separate methods to spatially segment the neurons within each imaging field: K-means clustering and correlations between
single neuron activity and mouse movements. The two methods segmented the neurons similarly and led to the conclusion that the origin
of the inverse relationship between correlation and distance seen statistically was twofold: clusters of highly temporally correlated
neurons were often spatially distinct from one another, and (even when the clusters were spatially intermingled) within the clusters, the
more correlated the neurons were to each other, the shorter the distance between them. Our results represent a direct observation of
functional clustering within the microcircuitry of the awake mouse motor cortex.

Introduction
The principle of wiring economy asserts that connected neurons
should be physically near to each other to reduce the overall
length of the wire connections. The effect of minimizing the costs
associated with wiring up distant neurons is an evolutionary ad-
vantage conferred upon the organism. This idea of wiring econ-
omy dates back to Cajal (1899) and has since been used to
understand the possible origins of topographic retinal mapping
onto the visual cortex (Cowey, 1979), the fractional volume of
cortical gray matter taken up by axons and dendrites (Chklovskii
et al., 2002), the positioning of cortical areas in the primate pre-
frontal cortex (Klyachko and Stevens, 2003), and the physical
placement of ganglia in the nematode nervous system (Cherniak,
1994). One extrapolation of the wiring minimization principle is
the idea that “like attracts like”: neurons involved in like compu-
tations are more likely to be synaptically connected to each other
than to other neurons and therefore should be as physically near
each other as possible (Mitchison, 1992).

When applied to the mammalian motor cortex, this “like at-
tracts like” idea has helped to explain the functional organization
that exists on the macroscopic scale (Aflalo and Graziano, 2006;

Graziano and Aflalo, 2007). Different studies have found func-
tional clustering in the form of subregions that emphasize
control of specific muscles (Asanuma and Rosén, 1972), direc-
tion of hand movement (Georgopoulos et al., 1982, 2007;
Amirikian and Georgopoulos, 2003) or ethologically relevant
movements (Graziano et al., 2002). These studies, however, used
electrode penetration mapping methods (either recording or
stimulation) that did not sample multiple sites simultaneously
and potentially suffered from cell selection bias. A more direct
way to reveal functional clustering would be to use cellular reso-
lution imaging techniques to study the mammalian motor cor-
tex. Furthermore, though the electrode studies demonstrated a
macroscopic organization, they only indirectly uncovered infor-
mation about microscopic clustering that may exist (Amirikian
and Georgopoulos, 2003). Imaging methods have described
functional organization on the microscopic scale in anesthe-
tized rodents (Kerr et al., 2007; Sato et al., 2007); however, due
largely to technical limitations associated with studying the
microcircuitry in the cortex of awake mammals, it remains un-
clear whether any significant functional clustering exists on the
microscopic scale. For example, does the same “like attracts like”
idea that shapes the macroscopic layout of the motor cortex also
apply at the microcircuit level? Using our recently developed
methods (Dombeck et al., 2007) to optically image the activity of
layer 2/3 neurons within a spatial window of �200 �m in awake
mice, we asked whether the forelimb region of the motor cortex
contained any spatial clustering in the functional properties of
single neurons. The mice were mobile, head-restrained, and per-
formed two distinct movements (running and grooming). We
measured the time-varying activity of neurons in the field of view
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and studied whether neurons with similar activity patterns were
spatially near each other.

Materials and Methods
Spherical treadmill and data acquisition. The spherical treadmill and two-
photon microscope designs have been previously described (Dombeck et
al., 2007). The computer mouse system used to record ball rotation, the
airpuff system and the data acquisition system used to record and syn-
chronize ball rotation, airpuff timing, and two-photon image frame tim-
ing are also the same as previously described (Dombeck et al., 2007). A
CCD camera (DCR-SR200, Sony) recorded the mouse movements. It
was synchronized to the two-photon time-series by recording the micro-
scope’s slow-galvanometer control voltage in the camera’s audio input.
This allowed for the CCD camera movies to be synchronized within one
frame to the two-photon time-series movies. The camera was used in IR
(“Night-shot”) mode with an added D950/10 filter (Chroma) to block
out the two-photon excitation light. The side of the mouse contralateral
to the two-photon imaging hemisphere was illuminated by 945 nm
IR-LEDs (RL5-IR2730, Super Bright LEDs).

Animals, training, and surgery. All experiments were performed in
compliance with the Guide for the Care and Use of Laboratory Animals
(http://www.nap.edu/readingroom/books/labrats/). Specific protocols
were approved by the Princeton University Institutional Animal Care
and Use Committee. Imaging experiments were performed on 10 male
B6CBAF1/J mice (P36 –P44). All of the mice underwent two training
sessions in which they ran freely on the floating ball, as described previ-
ously (Dombeck et al., 2007). Three of the mice then underwent further
training in which they were implanted with a temporary head-plate [af-
fixed to the skull with a small amount of Meta-bond (Parkell)] and were
head-restrained on the free-floating ball in complete darkness for 60 min
periods for 3 consecutive days. Honey was periodically applied to the
whiskers of these mice (to increase the frequency of grooming, see below)
during the head-restrained training sessions. The other 7 mice did not
receive this additional head-restrained training and were not head-
restrained until the imaging experiments. The point of this training was
to test if the main results in this research were affected by habituating the
mice to the experimental conditions before the imaging experiments;
however, no significant differences were seen (data not shown). There-
fore, we report here the combined results from all 10 mice (7 non-head-
restrained trained and 3 head-restrained trained).

Following the training sessions, the mice were anesthetized with isoflu-
orane, the temporary head-plates on the 3 head-restrained trained mice were
removed, and a 3-mm-diameter circular craniotomy (circle centered at 1.75
mm lateral and 0.13 mm rostral of bregma) was made over one hemisphere
and the skull was thinned �2 mm rostral and �2 mm caudal of the crani-
otomy edges to allow for the head-plate to fit flush against the edges of the
craniotomy. A thin ring of Kwik-sil (World Precision Instruments) was ap-
plied around the edges of the craniotomy and the bottom piece of the head-
plate (see supplemental Fig. 1D for head-plate design, available at www.
jneurosci.org as supplemental material) was pushed onto the uncured Kwik-
sil ring, with the 3 mm hole lined up to the 3 mm craniotomy, until it sat flush
against the skull (supplemental Fig. 1A, available at www.jneurosci.org as
supplemental material). When the Kwik-sil set, it had the effect of tempo-
rarily holding the head-plate in place until Meta-bond could be applied and
it also formed a water and air-tight seal between the bottom of the head-plate
and the skull. Meta-bond was then used to bond the bottom-piece of the
head-plate to the skull. Uniform thickness Kwik-Sil plugs (3 mm diameter,
0.65 mm thickness disks) were molded onto #1 thickness, 3.5-mm-diameter
coverslips (Custom coverslips from Erie Scientific) using a custom made
mold. The thickness of the plug was designed to apply slight pressure to the
surface of the dura to reduce out of focal plane (Z) brain motion. After
dye injection (supplemental Fig. 1 A, available at www.jneurosci.org as
supplemental material) and intracortical microstimulation (ICMS)
(supplemental Fig. 1 B, available at www.jneurosci.org as supplemental
material), the dura was allowed to dry until tacky, a small drop of un-
cured Kwik-sil was applied to the bottom of the plug, and the coverslip/
plug combination was inserted into the craniotomy and onto the shelf of
the bottom piece of the head plate and held rigidly in place with the top
piece (supplemental Fig. 1C, available at www.jneurosci.org as supple-

mental material). When cured, the small drop of Kwik-sil had the effect
of bonding the plug to the dura and reducing in-focal plane (X–Y ) brain
motion.

Following surgery, the mice were head restrained on the ball in com-
plete darkness. Typically, for the 7 non-head-restrained trained mice, it
would take �10 –15 min for the mouse to learn to balance and then begin
to walk or run; the 3 head-restrained trained mice could balance, walk
and run immediately. Imaging commenced �1 h, and ended �2– 4 h,
after waking from anesthesia.

Dye loading, ICMS, and two-photon microscopy. We initially performed
ICMS (details of parameters below) mapping studies in 5 mice not used for
imaging to identify the precise stereotaxic location of the forelimb motor
cortex in the B6CBAF1/J mouse strain. ICMS in an �1.0- to 1.5-mm-
diameter region centered at 1.75 mm lateral and 0.13 mm rostral of bregma
reliably evoked contralateral forelimb twitches. This area of the cortex was
therefore chosen for the subsequent set of imaging experiments.

Dye bolus loading and ICMS were carried out after the bottom
piece of the head-plate was affixed to the skull, but before the cover-
slip and Kwik-sil plug were implanted. A 10 mM stock of Calcium
Green-1 AM in DMSO � 20% pluronic was diluted tenfold into (in mM):
150 NaCl, 2.5 KCl, 10 HEPES, �0.05 SR101 (pH � 7.4). Filled pipettes
(borosilicate, 1.2 mm OD, 0.6 mm ID, FHC Co.; P-2000 puller, Sutter
Instruments) were beveled (BV-10, Sutter) to facilitate penetration of the
intact dura (post-beveling pipette resistance 5–9 M�). Pipettes were
advanced (MP285, Sutter) through the craniotomy at 39° with respect to
the brain surface and dye injection (1.5–2.0 psi, �8 min) was made at a
depth of �250 �m below the cortical surface (supplemental Fig. 1 A,
available at www.jneurosci.org as supplemental material). 2– 4 dye injec-
tions per mouse were stereotaxically targeted to the forelimb motor cor-
tex, but the exact stereotaxic location varied from mouse to mouse to
avoid large blood vessels. Neurons and astrocytes were labeled with the
green calcium-sensitive dye, but only the astrocytes were labeled with the
red dye SR101 (Nimmerjahn et al., 2004) (Fig. 1 Ai). The red SR101
channel allowed us to differentiate neurons from astrocytes and provided
a constant intensity image for off-line motion correction (Dombeck et
al., 2007). ICMS was then used (supplemental Fig. 1 B, available at www.
jneurosci.org as supplemental material) at each injection site in each
mouse to verify the location as the forelimb motor cortex. The lightly
anesthetized mouse (�0.25– 0.5% isoflurane) was held by the head-plate
and tail such that its limbs were free to hang in space. Pipettes filled with
3 M KCl (�1 M�) were advanced through the cortex such that the tip was
in Layer 5 (�550 �m deep) directly below the dye injection sites.
Cathodal pulse trains (6 –30 ms train duration, 100 – 400 �A, 400 �s
pulse duration, 333 Hz) (Hewlett-Packard 8116A pulse generator,
A.M.P.I. Iso-flex) starting with low amplitude and short train durations
were applied and slowly increased until contralateral forelimb muscle
twitches could be observed. The ICMS used to determine the location of
the motor area at each injection site took only a few minutes, involved
one electrode penetration per site and typically involved ��7 stimulus
trains per site. All time-series were acquired from locations in which the
movement was almost entirely from a region of the forelimb; occasion-
ally a smaller twitch of the ipsilateral forelimb could be discerned, but no
twitches of the face or other body regions were detectable.

The two-photon microscope used for imaging has been previously
described (Dombeck et al., 2007), however the collection optics were
modified: 680sp (Semrock) IR blocking filter, 542/50 (Semrock) calcium
green channel emission filter, 610/75 (Chroma) SR101 channel emission
filter. In most experiments, GaAsP PMTs (1077P-40, Hamamatsu) were
used, but Multi-Alkali PMTs (R6357, Hamamatsu) were used in a few of
the initial experiments. The illumination source was a Ti:Sapphire laser
(Mira 900 or Chameleon Ultra II, Coherent, �880 nm excitation light,
�100 fs pulses at 80 MHz) and a 40�, 0.8 NA objective (Olympus) was
used in all experiments. Sixty-two time-series (128 � 128 pixel) from 20
different dye injection sites in 10 mice were analyzed. Four time-series
were acquired at 4 Hz frame rate (2 ms/line, 500 –1500 frames) and 58 at
8 Hz (1 ms/line, 1000 –2000 frames); the field of view was �200 �m with
an average of �90 neurons/image field. Because the decay time of action
potential evoked somatic calcium transients under similar conditions to
ours is typically many hundreds of milliseconds (Kerr et al., 2005), it is
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unlikely that any transients were missed with the �8 Hz frame rate used
for almost all of our recordings (see supplemental Fig. 2, available at
www.jneurosci.org as supplemental material). Though our frame rate is
orders of magnitude slower than data acquisition rates using electrophys-
iological recording methods, it is common in the motor cortex to find
average spike rates on a similar timescale as our effective recording rate
for analysis and interpretation (Moritz et al., 2008). The resulting time
course of firing rates look qualitatively similar to the activity traces ob-
tained here from calcium-sensitive dye imaging (Moritz et al., 2008).

Complex motor pattern discrimination. Two optical computer mice
were used to record spherical treadmill velocity (Dombeck et al., 2007). A
running state vector was generated by first calculating three velocity
components of ball motion by separately integrating the counts received
at 5 ms intervals from the orthogonal motion sensors of each computer
mouse. Speed was calculated as the Euclidean norm of 3 perpendicular
components of ball velocity and the up state of the running state vector
started when the speed was �0.04 m/s and returned to the down state
when running speed was �0.01 m/s. Running involved coordinated
movements of all four limbs when all of the paws of the mouse were on or
close to the surface of the treadmill and was defined to include the fol-
lowing components: running forward, running sideways or backing up.
Running was typically spontaneous, but was occasionally elicited by us-
ing an airpuff to the mouse’s flank as described previously (Dombeck et
al., 2007). A grooming state vector was generated by hand while viewing
the CCD camera movies frame-by-frame. Grooming was defined to in-
clude mouse forelimb (contralateral to the two-photon imaged motor
cortex hemisphere) movements while the forelimb was off of the tread-
mill surface and the mouse was in the prone position; nearly all of
these movements included one or more of the following components:
forepaw licking, nose/face stroking, stroking of the whiskers, and/or
forelimb fanning in front of the mouse. To increase the frequency of
grooming, honey (�1 part honey:1 part water) was periodically ap-
plied to the whiskers.

Data analysis. Analysis was performed using ImageJ (1.40 g) and cus-
tom scripts written in MatLab (version 7). All data in the text and figures
are presented as mean �SD, except in the plots shown in Figures 2 and 6
and supplemental Figure 3, available at www.jneurosci.org as supple-
mental material, where the error bars represent SE.

Our previously developed Hidden Markov Model line by line motion
correction algorithm (Dombeck et al., 2007) was run on the static red
SR101 channel of the two-photon time-series to determine the brain
motion. This information was then used to shift the collected lines of
each frame of the dynamic calcium-sensitive dye channel in the time
series back to their correct position with respect to reference frames. The
mean in plane (X–Y ) Euclidean distance brain motion during running,
grooming and resting periods was 1.7 � 0.6 �m, 2.3 � 0.9 �m, 0.2 � 0.1
�m respectively and the mean out of plane (z) motion during running,
grooming and resting periods was 0.7 � 0.2 �m, 1.0 � 0.4 �m, 0.5 � 0.2
�m respectively. Neither the brain motion nor the motion correction
algorithm induced any artificial spatial correlations that significantly
contributed to the decrease in neuron–neuron correlation as a function
of neuron–neuron distance result shown in Figure 2 (see supplemental
Fig. 3, available at www.jneurosci.org as supplemental material). Polyg-
onal regions of interest (ROI) were manually defined on the time projec-
tion image of the time-series to closely approximate the outline of the
neuron of interest (neurons were defined as non-SR101 labeled cells).
Fractional changes in fluorescence for a given frame were calculated on a
pixel by pixel basis relative to the mean. The values for pixels present in
the ROI after motion correction were averaged. Occasionally, brain-
motion was such that no pixels were present in a specific ROI during a
given frame; the neurons corresponding to these ROIs were excluded
from all analysis. Slow time scale changes in the fluorescence time series
were removed by examining the distribution of fluorescence in a �12.5 s
interval around each sample time point and subtracting the 8% percen-
tile value. For �90% of the neuron fluorescence traces, this method
reliably subtracted slow changes without significantly filtering longer
events that had distinct onsets and offsets; however, in �10% of the
traces in which much longer duration transients were present, this
method was found to alter the longer events and hence was not used.

Instead, the baseline for these neurons was defined by hand and then
subtracted from the raw trace. The baseline subtracted neuron fluores-
cence traces were then subjected to the analysis of the ratio of positive to
negative going transients of various amplitudes and durations that we
described previously (Dombeck et al., 2007). We used this analysis to
identify significant transients with �5% false positive error rates and
generated the significant transient only traces (see Figs. 1 B, 4 A; orange
traces) that were used for all analysis in this research. Note that the
significant transient only traces are not discontinuous traces; the signif-
icant transients are left untouched, but the time points between the sig-
nificant transients are all set to 0. The point of generating the significant
transient only traces was to eliminate the effects of any possible motion
artifact induced negative going transients on our analysis. However, the
effects of these artifacts was minimal (supplemental Fig. 3, available at
www.jneurosci.org as supplemental material) and there was very little
difference between our results generated with the raw or with the signif-
icant transient only traces (see supplemental Fig. 4 B, C, available at www.
jneurosci.org as supplemental material). Correlations were calculated as
the Pearson’s correlation coefficient between the two traces of interest.
The statistical significance of the correlation values ( C) between fluores-
cence traces [either significant transient only single neuron fluorescence
or mean cluster fluorescence (defined as the mean of the significant
transient only traces of all of the neurons in a cluster)] and complex
mouse movement state vectors was determined by bootstrapping as fol-
lows. Each fluorescence trace was broken into at least 9 segments (deter-
mined by the significant transients) that were randomly shuffled. A
distribution of 10,000 random correlation values (Crand) was generated
by calculating the correlation coefficient between each randomly shuffled
fluorescence trace and the state vectors. The p value for the significance of
C was calculated as the fraction of the total number of Crand with values
greater than C. Neuron-neuron distances were calculated as the Euclid-
ean distance between the ROI centroids of the two neurons.

The following was used to determine the direction of maximal physical
separation between the running and grooming correlations of neurons.
First, the running correlation weighted mean and SD of position of all of
the neurons along a chosen direction was calculated; the positions of the
neurons were weighted by their running correlation coefficients (only
significant correlation values were considered). This calculation was then
repeated to determine the grooming correlation weighted mean and SD
of position of all of the neurons along the same direction. A t test was then
performed between the resulting running and grooming weighted posi-
tion distributions to determine the T-statistic. This T-statistic is essen-
tially a measure of whether any significant spatial separation exists along
the chosen direction between running and grooming neuron correlation
on the �200 �m scale of the image fields. We calculated this T-statistic
along 100 different directions (corresponding to angles from 0 to 180° in
1.8° increments) within each dataset image field. The direction (angle)
corresponding to the maximum T-statistic was then selected. We refer to
the maximum T-statistic as the spatial significance. The T-statistic for
each dataset was converted into a p value for the categorizations shown in
Figure 5.

The meta-K-means algorithm was applied independently to each of
the 62 image fields that were studied here. It employed 2500 runs of a
traditional K-means algorithm that was seeded each run by using the
K-means�� seeding strategy (Arthur and Vassilvitskii, 2007). Each run
generated 4 clusters, and correlation was used as the measure that
K-means minimized with respect to. Neurons that were in the same
cluster in �80% of the K-means runs were placed in metaclusters. Neu-
rons that were not in the same cluster with any other neurons in �80% of
the K-means runs were disregarded; this occurred for 4.3 � 2.7 neurons
per dataset (265 out of 4813 total neurons). To form the final clusters, the
metaclusters were then combined if the correlation between the mean
fluorescence traces of all of the neurons in each metacluster was greater
than a predetermined threshold (Tcorr). Tcorr could vary from image field
to image field (i.e., each of the 62 fields could have a different value of
Tcorr). It was determined by running the above described meta-K-means
algorithm many times, each time with a different value of Tcorr. The wide
range of Tcorr values (0.45– 0.95, in steps of 0.025) were typically suffi-
cient to explore the full spectrum of possible metacluster combina-
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tions from generating many small clusters
with Tcorr � 0.95 (leaving the metaclusters un-
combined) to generating one or two large clus-
ters with Tcorr � 0.45 (see supplemental Fig.
10, available at www.jneurosci.org as supple-
mental material). A heuristic was developed to
select the one specific value of Tcorr that simul-
taneously maximized both the mean cluster size
and the weighted mean of the intracluster neu-
ron–neuron correlations (weighted by clus-
ter size). This value of Tcorr was the value that
maximized the product of the mean cluster size
(scaled from 0 to 1) as a function of Tcorr and
the mean intracluster neuron–neuron correla-
tion (scaled from 0 to 1) as a function of Tcorr.
This value of Tcorr was then used in the above
described meta-K-means algorithm to gener-
ate the final clusters of neurons for each of the
62 image fields.

Results
Optical recording of calcium transients
with cellular resolution in forelimb
motor cortex of awake running and
grooming mice
To study the functional clustering within
the mouse motor cortex microcircuitry, we
bolus loaded (Stosiek et al., 2003) Calcium
Green-1-AM into layer 2/3 of the forelimb
motor cortex (Fig. 1Ai). We acquired two-
photon time-series movies of the labeled
area while the mouse displayed the move-
ments of running and grooming (Fig.
1Aii,iii) (see Materials and Methods for
definitions of running and grooming). This
provided a situation in which we could op-
tically record the spatio-temporal activity of
forelimb motor cortex neuron populations
while the mouse’s forelimb was used in two
qualitatively different and temporally dis-
tinct rhythmic movements. During the ac-
quisition of the two-photon time-series movies, the mice ran,
groomed, and rested 38 � 15, 21 � 14, and 41 � 16% of the time on
average, respectively. Calcium Green-1 	F/F traces (Fig. 1B, black
traces with orange segments) were extracted from ROIs drawn
around each neuron in the field. These 	F/F traces revealed a base-
line periodically interrupted by calcium transients that were typically
characterized by a sharp onset followed by a slower decay. The cal-
cium transients were of various amplitudes, consistent with a differ-
ence in the number of underlying action potentials (Kerr et al., 2005;
Sato et al., 2007), and of various durations, consistent with the sum-
mation of multiple transients (Dombeck et al., 2007; Greenberg et
al., 2008). Significant transients with �5% false positive error rates
were identified (see Materials and Methods) and used in all subse-
quent analysis (Fig. 1B, orange traces). These traces were taken as
a surrogate measure of spiking activity and are referred to as
the temporal activity pattern of the neurons. In all, 62 time-
series (�200 �m field of view, 87 � 14 neurons/image field,
4 – 8 Hz frame rate) from 20 different dye injection sites in 10
mice were analyzed.

Pairwise temporal correlation between neurons is inversely
related to distance
We began by studying in the awake behaving mouse whether
neuron–neuron correlation varied as a function of the dis-

tance between the neurons within our �200 �m fields of view.
For each time-series, we calculated all pairwise temporal ac-
tivity pattern correlations and pairwise distances between
neurons and then we combined the results from all 62 time-
series. When we plotted mean temporal correlation as a func-
tion of mean distance between the neurons (Fig. 2), we found
a significant inverse relationship between the two (Spearman’s
rank correlation coefficient of 
0.9971, p � 10 
5) (slope �

8.1 � 10 
4/�m, 95% confidence interval: (
8.5 �
10 
4,
7.7 � 10 
4)/�m): on average, the nearer neurons were
to each other in physical space, the more similar were their
activity patterns.

This statistical analysis of the correlation versus spatial sepa-
ration between neurons within the forelimb motor cortex during
movement (Fig. 2) demonstrates that the idea of “like attracts
like” is an important notion for understanding the micro-
organization of the awake motor cortex, but it provides no spe-
cifics about the detailed topography of the area. How does the
statistical spatial relationship between correlated neurons mani-
fest itself in the real space of the brain? In the rest of the Results,
we explore this question using two separate approaches to study
the spatial order within our �200 �m fields of view. We first
describe a K-means algorithm that clusters neurons based on
their temporal activity patterns and then we study the spatial

Figure 1. Optically recording calcium transients with cellular resolution in forelimb motor cortex of awake running and groom-
ing mice. Ai, A two-photon microscopy (TPM) image of a typical field of view from a bolus loaded region of forelimb motor cortex;
neuron somata appear as green discs; green, calcium green-1 fluorescence; red, SR101 fluorescence; numbered neurons corre-
spond to numbered traces in B. Neurons and astrocytes were both labeled with the green calcium-sensitive dye. The red SR101 dye
labeled only astrocytes and allowed us to differentiate neurons from astrocytes and provided a constant intensity image for off-line
motion correction. Aii, iii, Images of head-restrained mouse grooming (ii) and running (iii) during two-photon time-series
acquisition. The limbs of the mouse are resting on the spherical treadmill. One of the two horizontal head-restraint bars can be seen
attached to the head-plate and the microscope objective can be seen at the correct position used to image cortical layer 2/3 through
the cranial window. B, Calcium green-1 baseline subtracted 	F/F traces are shown in black for the neurons labeled in Ai. Orange
traces indicate significant calcium transients with �5% false positive error rates (see Materials and Methods). The running and
grooming state vectors are shown at the bottom.
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arrangement of the clusters of neurons. Second, we code each
neuron within an image according to the correlation of its tem-
poral activity pattern to running and/or to grooming and then
examine the spatial layout of the coded neurons. While any spa-
tial clustering determined by either approach is susceptible to
some degree of parameter dependence (K-means analysis for the
selection of specific thresholds; mouse movement correlation
analysis for the selection of the important aspects of forelimb
movement, see below), in the end we find that the two ap-
proaches spatially segment the neurons very similarly, adding
confidence to the end results.

Temporally correlated neurons cluster into spatially
distinct groups
We used a clustering technique to examine if neurons could be
clustered solely by the correlations between their temporal activ-
ity patterns, and if so, if the clusters exhibited any spatial organi-
zation. Here we describe our clustering algorithm by first
showing the clustering (Fig. 3A) and spatial organization (Fig.
3C) results on one specific example dataset and then by showing
the combined clustering (Fig. 3B) and spatial organization (Fig.
3D,E) results from all 62 datasets. We adapted a meta-K-means
algorithm (Ozden et al., 2008) to separate the activity traces of the
neurons within each time-series into discrete clusters. The algo-
rithm started with the individual neuron activity traces (Fig. 3Ai)
which were arranged randomly with respect to their neuron–
neuron correlation values (Fig. 3Aii). The algorithm employed
numerous runs of K-means��, which is a carefully seeded ver-
sion of the traditional K-means algorithm (Arthur and Vassil-
vitskii, 2007), followed by a series of steps designed to maximize
both the cluster size and intracluster neuron–neuron correlations
(see Materials and Methods for details). It is unlikely that our
algorithm (or any other K-means algorithm) finds the optimal clus-
tering of the neural activity traces (a computationally NP-hard
problem), but it was successful in segmenting the data in a rea-
sonable manner. When the algorithm was run on the activity
traces shown in the example of Figure 3Ai, it found two large
clusters (Fig. 3Aiii,iv, clusters 1 and 2) and four smaller clusters
(Fig. 3Aiii,iv, other clusters); for display in Figure 3, Aiii and Aiv,
the traces were sorted first into their respective clusters and then
within each cluster by their correlation to the cluster’s mean ac-
tivity trace (see supplemental Fig. 5, available at www.jneurosci.
org as supplemental material, for the same plot shown in Fig. 3Aiii,
but with the traces not sorted within each cluster). This sorting

makes it apparent for this example that the intracluster neuron ac-
tivity patterns were more similar than intercluster neuron activity
patterns (Fig. 3Aiii), and that the intracluster neuron–neuron
correlations were significantly larger than intercluster neuron–
neuron correlations (0.40 � 0.14 vs 0.18 � 0.16, p � 10
6, two-
tailed t test, N � 86 neurons) (Fig. 3Aiv). In general, the
combined results of the meta-K-means clustering on all of the
time-series datasets revealed that the algorithm consistently
found clusters with mean intracluster neuron–neuron correla-
tions greater than the intercluster neuron–neuron correlations
(0.43 � 0.18 vs 0.15 � 0.17, p � 10
10, two-tailed t test, N � 4813
neurons). When clusters of the same size were generated by ran-
domly assigning neurons to a cluster, the mean intracluster neu-
ron–neuron correlation (0.31 � 0.23) was between, and
statistically different from, the intercluster ( p � 10
10, two-
tailed t test, N � 4813 neurons) and intracluster ( p � 10
10,
two-tailed t test, N � 4813 neurons) neuron–neuron correlation
values obtained by the algorithm (Fig. 3B).

With all of the neurons within a field of view assigned to a
cluster based on the correlations between their activity patterns,
we could then examine the spatial micro-organization of the clus-
tered neurons by looking at their physical locations with respect
to each other. Figure 3Ci shows the field of view from which the
neural activity traces in Figure 3Ai,iii were acquired. When the
neurons within this field were false-colored according to their
cluster identity, a clear spatial separation was observed (Fig.
3Cii); most striking is the separation between the largest clusters,
clusters 1 and 2 (Fig. 3Cii, red- and green-colored clusters, re-
spectively). The spatial separation between the clustered neurons
within the field of this specific example was statistically signifi-
cant, with the mean intracluster neuron–neuron distance less
than the mean intercluster neuron–neuron distance (86 � 42 vs
107 � 48 �m, p � 0.01, two-tailed t test, N � 86 neurons). Due to
the relatively large spatial extent of each of the large clusters (clus-
ters 1 and 2), this small but significant difference between the
intra- and intercluster neuron–neuron distances is exactly what is
expected, even for the well spatially separated clusters shown in
Figure 3Cii. Upon inspection, we found that many of the 62 fields
of view contained spatially separated clusters such as those seen in
Figure 3Cii. This effect of intercluster neuron–neuron distances
being greater than intracluster distances was consistent when
examined in each of the 62 datasets (Fig. 3E). When the results
from all of the time-series datasets were combined, an average
effect similar to that seen in the specific example of Figure 3, A
and C, was observed: the mean intracluster neuron–neuron
distances were smaller and significantly different from the
mean intercluster neuron–neuron distances (88 � 43 vs 95 �
44 �m, p � 10 
6, two-tailed t test, N � 4813 neurons) (Fig.
3D). These results indicate that functional spatial clustering
exists in the forelimb motor cortex of the awake mouse during
movements such that coactive neurons are often clumped to-
gether. These highly internally correlated and often spatially
distinct clusters are, at least partly, responsible for the inverse
relationship seen between neuron–neuron correlation and
distance in Figure 2.

Neuronal clusters and individual neurons showed strong
correlation to running and grooming
We next studied whether the mean activity of the neuronal clus-
ters had any correlation to the most apparent ongoing move-
ments: running and grooming. Figure 4A (bottom) shows an
example of the mean temporal activity pattern for the largest
clusters (clusters 1 and 2) from the specific example shown in

Figure 2. Plot of mean neuron–neuron temporal activity pattern correlation versus mean
neuron–neuron distance averaged over all acquired time-series. The error bars represent SE.

Dombeck et al. • Cortical Functional Microclustering in Awake Mice J. Neurosci., November 4, 2009 • 29(44):13751–13760 • 13755



Figure 3, A and C, along with the timing
of running and grooming movements.
When the correlation of mean cluster ac-
tivity to running or grooming was calcu-
lated (see supplemental Fig. 6A for data
displayed in a two dimensional plot, avail-
able at www.jneurosci.org as supplemental
material), it was apparent that the largest
clusters were significantly correlated to run-
ning (cluster 1, running correlation �
0.60, grooming correlation � 
0.10) and
grooming (cluster 2, grooming correla-
tion � 0.61, running correlation �

0.07), while the other smaller clusters
had little correlation to these two move-
ments. Upon inspection, it became appar-
ent that many of the clusters in our
datasets had mean temporal activity pat-
terns that closely matched the time course
of running, grooming, or both move-
ments, but far fewer clusters had activity
patterns that matched only specific com-
ponents of the movements (such as strok-
ing the whiskers or running only forward,
see Materials and Methods for more de-
tails on the components) or different
more subtle movements not relating to
running or grooming. Therefore, when
examined across all of the datasets, a vast
majority of the mean activity patterns of
the large clusters were significantly corre-
lated to running or grooming movements
(supplemental Fig. 6B, available at www.
jneurosci.org as supplemental material).
In fact, 87.7% of the 4813 neurons in all 62
time-series were in clusters with statisti-
cally significant running and/or grooming
correlation ( p � 0.05; p value from boot-
strapping, see Materials and Methods).
No large clusters (only small clusters
containing 12.3% of the total number of
neurons) were found that were not sig-
nificantly correlated to the complex
motor patterns of running and groom-
ing ( p � 0.05).

The results above demonstrate that the
meta-K-means analysis is, in fact, seg-
menting the neurons into largely running
and/or grooming correlated groups; it was
therefore of interest to investigate run-
ning and grooming correlation on the
single-cell level. A large fraction of indi-
vidual neuron temporal activity patterns
were correlated to running and grooming movements. This can
be seen in the single neuron activity pattern traces of the example
dataset shown in Figure 4A (top) (Fig. 4Bii, labeled neurons;
time-series dataset same as Fig. 3A,C) and in the combined data
of the 4813 neurons from all 62 datasets (supplemental Fig. 6C,
available at www.jneurosci.org as supplemental material), where
82.9% of individual neurons had statistically significant running
and/or grooming correlations ( p � 0.05, p value from bootstrap-
ping). Because of this large fraction of individual neurons with
statistically significant running and/or grooming correlation, we

next investigated the spatial clustering of running and grooming
correlation on the single-cell level. When the neurons within the
image from the example time-series dataset shown in Figure 3, A
and C, were coded according to the magnitude of their running
and/or grooming correlation, it became clear that the resulting
spatial segmentation of the field was nearly identical to that ob-
tained using the meta-K-means analysis (Fig. 4Bi,ii). Therefore,
the spatial segmentation of the neurons provided by meta-K-
means (knowing nothing about the running or grooming time
course) are very similar, and in some cases nearly identical, to the

Figure 3. Meta-K-means clustering of neurons based on their temporal activity patterns. A, A plot of neuron temporal activity patterns
(Ai) and neuron–neuron correlations (Aii) for the 86 neurons in the field of view shown in C. The ordering of the neurons in Ai and Aii is
random. After meta-K-means clustering, the neurons were grouped into clusters based on their temporal activity patterns (Aiii). The
neurons were sorted first into their respective clusters and then within each cluster by their correlation to the cluster’s mean activity trace.
This sorting is most apparent in the neuron–neuron correlation plot (Aiv). Note that 5 of the neurons were not assigned to a cluster due to
their dissimilar activity patterns compared to all other neurons and therefore they are not shown in Aiii and Aiv. Though the running and
grooming state vectors were not used in the meta-K-means clustering, they are shown at the bottom of Aiii for reference in Ai and Aiii. B,
Histogram of intra- and intercluster neuron–neuron correlation values for all 62 time-series datasets (light gray and dark gray, respectively)
along with intracluster neuron–neuron correlation values for the same cluster sizes but with randomly assigned neurons (purple). *p �
10 
10. Ci, TPM image of the field of view containing the 86 neurons from A. Cii, False color image of the field shown in Ci in which the
neurons are colored according to their cluster identity. A red or green asterisk has been placed at the mean position of all of the neurons in
cluster 1 or cluster 2, respectively. The mean x-position of the neurons in cluster 1 is significantly different ( p � 10 
5, two-tailed t test,
N�46 neurons in cluster 1 and 26 neurons in cluster 2) from the mean x-position of the neurons in cluster 2, while the y-positions are not
significantly different ( p�0.56). D, Histogram of the intra- and intercluster neuron–neuron distances for all 62 time-series datasets (light
grayandblack,respectively).*p�10 
6.E,Alineplotwithonelineforeachdatasetgoingfromthemeaninterclusterdistancetothemean
intracluster distance. Lines with negative and positive slope are colored red and black respectively. The black bars represent the mean
neuron–neuron distance. Note that the majority of the lines are red, indicating that for the majority of the 62 datasets, the intercluster
neuron–neuron distances are greater than the intracluster neuron–neuron distances.
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spatial segmentation based on correlations between single neu-
ron activity and mouse movements.

We note that because many different low-level aspects of fore-
limb movement could be used to distinguish running from
grooming (muscle activation, hand position with respect to the
body, speed or direction of hand movements, etc.), it is unclear
which aspect is most important for segmenting the neurons. Al-
though we refer to neurons here as running correlated or groom-
ing correlated, this terminology is not meant to imply a strict
ethological function for the neurons and is meant to encompass
any of the possibly important aspects of forelimb movement.

The spatial layout of neurons with temporal activity patterns
correlated to running or grooming
To study the spatial layout of the movement correlated neurons, we
coded the neurons within an image according to the magnitude of
their running and grooming correlations and then determined the
direction along which the maximum physical separation between
running and grooming correlations occurred (see Materials and
Methods) (Fig. 5, white arrows). We refer to this measure of
physical separation as the spatial significance. The distribution of
spatial significance values from all time-series datasets (excluding
the 5 homogeneous fields, defined below) is shown in supple-
mental Figure 7A, available at www.jneurosci.org as supplemen-
tal material, along with the spatial significance values obtained
from the datasets with the neurons in the same physical location,
but with their correlation coefficients randomly drawn from the
distribution in supplemental Figure 6C, available at www.
jneurosci.org as supplemental material; the data showed a signif-

icantly greater level of spatial significance
compared to the randomized data (2.1 �
1.3 vs 1.3 � 0.7, p � 10
13, two-tailed t
test, N � 57 image fields, M � 310 fields
with randomized correlations). We cate-
gorized each of the 62 time series datasets
into one of four possible categories and
show 2 examples of each in Figure 5: ho-
mogeneous (Fig. 5A), significant spatial
separation (spatial significance p � 0.01)
(Fig. 5B) (see supplemental Movie 2,
available at www.jneurosci.org as supple-
mental material), moderate spatial sepa-
ration (spatial significance 0.01 � p �
0.1) (Fig. 5C), and little spatial separation
(spatial significance p � 0.1) (Fig. 5D).

Homogeneous image fields are charac-
terized by the presence of only one move-
ment correlated neuron type throughout
the field. These fields were relatively rare,
consisting of only �8% of the total
number of fields investigated. Signifi-
cant spatial separation image fields are
characterized by the presence and clear spa-
tial separation of both correlation types. Of-
ten, these fields appeared as border regions
between two homogeneous fields, or a large
homogeneous field containing a smaller
embedded homogeneous field of the oppo-
site movement correlated neuron type.
These fields consisted of �34% of the to-
tal number of image fields. Moderate spa-
tial separation fields (�32% of the total
number of fields) consisted of both neu-

ron correlation types and, while some spatial separation between
the correlation types was observed, the two populations were
more intermingled compared to the significant spatial separation
image fields. The image fields with little spatial separation (�26%
of the total number of fields) between the neuron correlation
types often appeared to have the two populations randomly
mixed: no spatial clustering could be discerned on the �200 �m
scale. It is possible that many of these little separation fields con-
sist of smaller significant subdomains of running or grooming
correlated neurons for which the larger scale spatial order disap-
pears. However, this was not seen; not only was no spatial signifi-
cance observed on the �200 �m scale, it was also not observed on
any smaller scale (supplemental Fig. 7Bii, available at www.
jneurosci.org as supplemental material). Interestingly, when we ex-
amined the mean spatial significance of all of the datasets (excluding
the homogeneous fields) on a scale smaller than�200 �m, we found
spatial significance down to a scale of �100 �m ( p � 0.01,
two-tailed t test, N � 57 datasets, M � 570 randomized data-
sets) (supplemental Fig. 7Bi, available at www.jneurosci.org as
supplemental material), indicating that functional clustering
within this region of the cortex is present above this spatial
scale, but not below it.

To investigate the contribution that spatially segmented run-
ning and grooming neuron correlations may have on the inverse
relationship seen between neuron–neuron correlation and dis-
tance in Figure 2, we plotted neuron–neuron correlation versus
distance first for all of the significant spatial separation fields and
then for the all of the little spatial separation fields (Fig. 6A).
While both subsets showed a significant inverse relationship be-

Figure 4. Neuronal clusters and individual neurons showed strong correlation to running and grooming. A, Bottom, Mean
temporal activity pattern of all of the neurons in cluster 1 (red) and cluster 2 (green) from Figure 3Aiii,iv,Cii along with the running
and grooming state vectors. Top, Single neuron temporal activity pattern traces (orange) (Calcium green-1 fluorescence versus
time traces shown in black) for the neurons labeled in Bii; running and grooming state vectors same as bottom. Neurons 1 and 2 are
running correlated (running correlations � 0.63 and 0.47, grooming correlation � 
0.37 and 
0.26, respectively); Neurons 3
and 4 are grooming correlated (grooming correlation � 0.43 and 0.43, running correlations �
0.13 and 
0.12, respectively).
B, Comparison of the two different methods of segmenting the neurons within a field (dataset same as Fig. 3 A, C): i, neurons are
colored according to their cluster identity obtained from meta-K-means analysis of their temporal activity patterns, and ii, neurons
are colored according to the magnitude of their correlation to running (red) and grooming (green); only significant ( p � 0.05)
positive correlation values are shown.
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tween correlation and distance (Spearman’s rank correlation co-
efficient of 
1, p � 10
20 for both subsets), the slope for the
significant separation fields (slope � 
8.1 � 10
4/�m, 95%
confidence interval: (
8.5 � 10
4, 
7.7 � 10
4)/�m) was sig-
nificantly less than ( p � 10
4, two-tailed t test, N � 20 degrees of
freedom) the slope for the little separation fields (slope � 
6.5 �

10
4/�m, 95% confidence interval:
(
7.0 � 10
4, 
6.0 � 10
4)/�m). This
indicates that the spatial separation seen
between running and grooming correla-
tions in the significant separation fields
(and seen between many of the spatially
distinct K-means clusters above) is part of
the origin of the correlation versus dis-
tance result from Figure 2. Interestingly,
the little separation fields showed a signif-
icant inverse relationship between neu-
ron–neuron correlation and distance (Fig.
6A), indicating that spatial clustering was
likely also present within the running or
grooming correlation subpopulations.
This was in fact the case, when we plotted
correlation versus distance, a significant
inverse relationship was found for each of
the subpopulations (Spearman’s rank
correlation coefficient of 
0.985 ( p �
10
5), 
0.921( p � 10
6), 
0.954 ( p �
10
5) for the running, grooming, and

both subpopulations, respectively) (Fig. 6B). This indicates that,
in addition to spatial separation between running and grooming
neuron correlations, spatial clustering within the running and
grooming correlation subpopulations was also part of the origin
of the correlation versus distance result from Figure 2.

Figure 5. The spatial layout of neurons with temporal activity patterns correlated to running or grooming. When the neurons within each image were colored according to the magnitude of their
movement correlations, it was possible to categorize the time-series fields based on their spatial significance value: Homogeneous (A, top and bottom), significant spatial separation (B, top and
bottom), moderate spatial separation (C, top and bottom), or little spatial separation (D, top and bottom). The arrows point in the direction of maximum physical separation between running and
grooming correlations and the length of the arrows are directly related to the magnitude of the physical separation (the spatial significance). The plots associated with each image shows the mean
neuron correlation to running (red) and grooming (green) as a function of distance along this maximum separation direction. Note that the maximum separation angle and spatial significance is
poorly defined for a homogeneous field and therefore no arrows are shown in A. Two perpendicular directions were chosen to generate the plots associated with each image in A. Also note that only
significant ( p � 0.05) positive correlation values are shown. Scale bars: 30 �m.

Figure 6. Plot of mean neuron–neuron temporal activity pattern correlation versus mean neuron–neuron distance averaged
for subsets of the data: A, all significant spatial separation fields (black) and all little spatial separation fields (gray); B, all grooming
(green, defined as Cgroom � 0.3 and Crun � 0.5* Cgroom), all running (red, defined as Crun � 0.3 and Cgroom � 0.5* Crun) or all both
(blue, defined as Crun (or groom) � 0.3 and Crun (or groom) � Cgroom (or run) � 0.5* Crun (or groom)) movement correlated neurons from
all 62 time-series datasets. The error bars represent SE. The traces have been normalized by the correlation value at the shortest
pairwise distance. Note that for A, the significant spatial separation trace was normalized by 0.28 (the correlation value at �20
�m) and the little spatial separation trace was normalized by 0.33, meaning that the little spatial separation fields have an overall
higher level of neuron–neuron correlation compared to the significant spatial separation fields.
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Discussion
We explored the correlation versus distance relationship between
neurons within the forelimb motor cortex of awake mice during
the movements of running and grooming by optically recording
neuronal activity at cellular resolution. By imaging fields of �200
�m in diameter, we were able to investigate �90 layer 2/3 neu-
rons simultaneously and show statistically that the temporal cor-
relation between neurons increased the closer the neurons were
to each other (Fig. 2). We further explored this result by using two
separate methods to spatially segment the neurons within each
imaging field. First, we used a K-means analysis method that
separated the neurons within an image field into clusters with
similar activity patterns. When we looked at the spatial organiza-
tion of the neurons within these clusters, we found that neurons
with like activity patterns were often clumped together and were
more likely to be nearer to each other than they were to neurons
with dissimilar activity patterns. Second, we examined the spatial
layout of single neurons that were coded according to their cor-
relation to running or grooming. In the end, the two methods
segmented the neurons very similarly: the meta-K-means analy-
sis was segmenting the neurons into largely running and/or
grooming correlated clusters. When we searched for spatial sep-
aration between running and grooming neuron correlations, we
found that a majority of the fields had a moderate to significant
level of spatial separation; this separation accounted for some,
but not all, of the correlation versus distance result seen in Figure
2. Another component of the correlation versus distance result
was an organization that existed within the clusters: the closer the
neurons were to each other the more correlated they were. There-
fore, the origin of the inverse relationship between correlation
and distance seen statistically in the awake motor cortex (Fig. 2)
was twofold: clusters of highly correlated neurons were often
spatially distinct from one another and (even when the clusters
were spatially intermingled) within the clusters, the more corre-
lated the neurons were to each other, the shorter the distance
between them. In general, our results suggest the existence of a
functional spatial clustering of the population code within the
awake mouse motor cortex microcircuitry (for a more global
view see supplemental Fig. 9, available at www.jneurosci.org as
supplemental material).

Few in vivo rodent studies have investigated the functional
organization of the motor cortex, and none at the microscopic
scale investigated here. In the existing studies, short duration
ICMS has revealed blurred somatotopy representations on
the �0.5–1 mm scale (Li and Waters, 1991; Pronichev and
Lenkov, 1998), while longer duration ICMS in rats have shown
spatially distinct �0.5–1 mm scale complex movement areas
(Ramanathan et al., 2006). In a separate study in which brain
slices were made from the forelimb motor cortex of mice, the
local excitatory connectivity was probed on the ��100 �m
scale using laser-scanning photostimulation (Weiler et al.,
2008). This study found the layer 2/3 to layer 5 connections to
be the dominant excitatory pathway, though it was also shown
that multiple other intralaminar pathways were present, with
layer 2 as the strongest intralaminar pathway. While direct
somatodendritic stimulation precluded study of the local con-
nectivity at ��100 �m, it was apparent that within layer 2/3
the majority of intralaminar excitatory input comes from the
local circuitry (�500 �m) and the synaptic connection be-
tween neurons increases with decreasing distance (Weiler et
al., 2008). In our current research, it is unclear whether the
functional microclustering in awake animals is due to distant

converging afferents or more local connectivity. The results of
Weiler et al. show clear local connectivity on the scale of and in
the same cortical region of our imaging experiments, thus
demonstrating that it is likely an important component for
understanding the microclustering that we observed within
the awake mouse motor cortex.

Compared to the rodent, a far greater number of studies have
investigated functional clustering within the primate motor cor-
tex. However, functional imaging studies at the microscopic scale
in awake subjects have only been performed in a handful of stud-
ies and thus far only in rodents (Dombeck et al., 2007; Flusberg et
al., 2008; Greenberg et al., 2008). Therefore it is not yet possible to
compare our functional microclustering results in the mouse to any
primate functional microscopic imaging studies. Electrode studies in
the primate motor cortex, however, have indirectly revealed direc-
tion columns on the scale of �100 �m (Georgopoulos et al., 2007),
while other studies have found muscle columns on the scale of
�0.5–1 mm (Asanuma, 1975). Larger zones of functional orga-
nization (2–5 mm) were found when studying the ethological
layout of the motor cortex (Graziano et al., 2002, 2005). It is
unclear whether any correspondence can be made between the
microcircuitry within the cortex of rodents and that within
higher mammals. In a single neuron resolution imaging study of
the visual cortex of anesthetized subjects for example, heteroge-
neous fields of orientation responsive neurons were found in
rodents whereas highly structured homogeneous fields were ob-
served in cats (Ohki et al., 2005). However, if we assume that our
results from the mouse can be compared directly to research
performed in the primate motor cortex, then two hypotheses can
be formed concerning the possible functional microclustering
within the primate motor cortex. The first assumes that the only
differences between the motor cortices of primates and mice is
their physical size (primate motor cortex is �6 times larger than
mouse motor cortex), and that any microstructure therein scales
accordingly. This implies that functional clustering would exist in
the primate motor cortex on the scale larger than �1 mm, similar
to the scale inferred from some electrode penetration studies
(Asanuma, 1975; Graziano et al., 2002, 2005). On the other hand,
it could be assumed that the physical size of cortical microcircuits
is a fundamental building block of cortical hierarchy that does
not scale with brain size. This would imply that functional clus-
tering would exist in the primate motor cortex on the ��100 �m
scale that we observed in the mouse, similar to the scale inferred
in a recent electrode study (Georgopoulos et al., 2007).

It is unclear what specific aspects of the running and grooming
movements in our research are spatially clustered. Previous
studies found functional clustering in the motor cortex in the
form of subregions that emphasize control of complex move-
ments (Graziano et al., 2002), direction of movements (Georgo-
poulos et al., 1982), and muscle activation (Asanuma, 1975). In a
correlative study in which neuronal activity and behavior are
simultaneously measured and compared, it is notoriously dif-
ficult to draw causal conclusions about the particular aspects
of movement directly controlled by motor cortex neurons.
Here, due to the correlative nature of our experiments, no
definite conclusions can be made about which aspect of the
mouse’s complex behavior was most important for the func-
tional spatial clustering.

Though we have focused on the forelimb motor cortex, it
would also be of interest to investigate the spatial clustering in
neighboring regions during running and grooming. For example,
the use of the hind-limb is qualitatively different during the lo-
comotion movements of running compared to the balancing
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movements needed during grooming. We hypothesize that due
to the different muscle activations of the hind-limb these two
movements, similar results to what we found in the forelimb
motor cortex may be found. Wide-field imaging methods (Berger
et al., 2007; Ferezou et al., 2007) may be useful to observe the
large-scale activation of the motor cortex during running and
grooming. These studies may help inform the locations to further
probe in future two-photon imaging studies. Finally, we note that
new techniques that have been applied to awake behaving rodents
(Brecht et al., 2004; Ferezou et al., 2007; Kuhn et al., 2008; Poulet
and Petersen, 2008) are likely to compliment our results. For
example, it was recently found during periods of quiet wakeful-
ness that layer 2/3 barrel cortex neurons undergo �10 mV am-
plitude Up-Down state transitions at �2–5 Hz (Poulet and
Petersen, 2008). While the temporal resolution of our recordings
was fast enough to see the �2–5 Hz transitions, subthreshold
activity may not be detectable with our imaging method. We
analyzed the significant calcium transients during periods of rest-
ing and found the rate of their occurrence (0.29 � 0.14 significant
transients/s) to be an order of magnitude lower than the transi-
tions recently observed (Poulet and Petersen, 2008). However,
since more work is necessary to quantify the sensitivity of our
method to this subthreshold activity, our inability to see these
transitions during resting does not imply that they are not
present; future experiments, possibly using different methods
(Berger et al., 2007; Kuhn et al., 2008), will be needed to search for
these signals in the motor cortex.
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