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Princeton, United States; 2Department of Clinical Neuroscience, Karolinska
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Abstract In a traditional view, in social cognition, attention is equated with gaze and people
track other people’s attention by tracking their gaze. Here, we used fMRI to test whether the brain
represents attention in a richer manner. People read stories describing an agent (either oneself or
someone else) directing attention to an object in one of two ways: either internally directed
(endogenous) or externally induced (exogenous). We used multivoxel pattern analysis to examine
how brain areas within the theory-of-mind network encoded attention type and agent type. Brain
activity patterns in the left temporo-parietal junction (TPJ) showed significant decoding of
information about endogenous versus exogenous attention. The left TPJ, left superior temporal
sulcus (STS), precuneus, and medial prefrontal cortex (MPFC) significantly decoded agent type (self
versus other). These findings show that the brain constructs a rich model of one’s own and others’
attentional state, possibly aiding theory of mind.

Introduction
Reconstructing someone else’s attentional state is of central importance in theory of mind (Baron-
Cohen, 1997; Calder et al., 2002; Graziano, 2013). By identifying the object of someone else’s
attention, and having some intuitive understanding of the complex dynamics and consequences of
attention, one can reconstruct at least some of the other person’s likely thoughts, intentions, and
emotions, and make predictions about that person’s behavior. Almost all work on how people recon-
struct the attention of others has focused on gaze direction. For example, the human eye has a high
contrast between pupil and sclera, possibly an adaptation for better gaze tracking (Kobayashi and
Kohshima, 1997). The superior temporal sulcus in monkeys and humans may contain specialized
neural circuitry for processing gaze direction (Hoffman and Haxby, 2000; Marquardt et al., 2017;
Perrett et al., 1985; Puce et al., 1998; Wicker et al., 1998). Seeing a face gaze at an object auto-
matically draws one’s own attention to the object (Friesen and Kingstone, 1998; Frischen et al.,
2007). These and other findings show the importance of reconstructing gaze direction in social
cognition.

To be adaptive in aiding theory of mind, however, a model of attention should be far more than a
vector indicating gaze direction. We previously suggested that the human brain constructs a rich,
dynamic, and predictive model of other people’s attention (Graziano, 2019; Graziano, 2013;
Graziano and Kastner, 2011). The model should contain information about different types of atten-
tion, about the rapidity or sluggishness with which attention tends to move from item to item, about
how external factors such as salience and clutter are likely to affect a person’s attention, and about
how attention profoundly affects thought, memory, and behavior. In the proposal, that deeper
model is constrained by incoming information, including gaze direction. However, other cues can
also constrain the model. People rely on the other person’s body posture, on cues in the surround-
ing environment, on speech, and on social context. For example, blind people must be able to build
models of other people’s attention without seeing the other person’s eyes. Likewise, during a phone
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conversation, we cannot see the other person and yet we intuitively understand whether that person

is attending to what we have said or is distracted by her own words or by a salient event on her end

of the line.
Several recent experiments provide evidence for an automatically constructed model of the atten-

tion of others that may go beyond merely registering gaze direction (Guterstam et al., 2019;

Guterstam and Graziano, 2020a; Kelly et al., 2014; Pesquita et al., 2016; Randall and Guter-

stam, 2020; Vernet et al., 2019). For example, Pesquita et al., 2016 found that when participants

watch an actor in a video attending to an object, the participants implicitly distinguish between

whether the actor’s attention was drawn to the object exogenously (bottom-up or stimulus-driven

attention), or whether the actor endogenously shifted attention to the object (top-down or internally

driven attention). Exogenous and endogenous attention are the two principal ways in which selective

attention moves between objects. They are emphasized in distinct cortical networks (the ventral and

dorsal attention networks), and they influence the behavior of agents in profoundly different man-

ners (Corbetta et al., 2008; Corbetta and Shulman, 2002; Posner, 1980; Shulman et al., 2010).

The ability to distinguish between someone else’s exogenous and endogenous attention is therefore

one example of how people may construct a rich, dynamic, and useful model of other people’s

attention beyond merely encoding gaze direction or identifying the object of attention.
Inspired by the vignette-style tasks widely used in studies on theory of mind (Fletcher et al.,

1995; Gallagher et al., 2000; Happé, 1994; Saxe and Kanwisher, 2003; Vogeley et al., 2001), in

the present study, we used functional magnetic resonance imaging (fMRI) and multi-voxel pattern

analysis (MVPA) to study brain activity in participants while they read brief stories about people’s

attention (Figure 1). Some of the stories implied that attention was being attracted exogenously

(‘Kevin walks into his closet and notices the bright red tie. . .’) and some stories implied that attention

was being directed endogenously (‘Kevin walks into his closet and looks for the bright red tie. . .’).

We also included analogous stories written in the first person, casting the subject of the experiment

as the agent (‘You walk into your closet and notice the bright red tie. . .’). The study therefore used a
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Figure 1. Methods. (A) Schematic timeline of the fMRI design. In each trial, subjects were presented with a short story for 10 s, describing a scene in

which an agent attended to an object in the environment. A probe statement was then shown for 4 s, relating to either the story’s spatial context or

object property, to which the subjects responded either true or false by button press. (B) The agent in the story was either the subject him-/herself (self)

or another person (other), and directed attention to the object endogenously (internally driven attention) or exogenously (stimulus-driven attention),

yielding a 2 ! 2 factorial design of attention type ! agent. We created 80 unique stories in four different versions, one for each condition. We made

minimal changes to the wordings to keep the story versions as semantically similar as possible. Green highlighting indicates wording specifying agent,

yellow highlighting indicates wording specifying attention type (colors not part of actual visual stimuli). For each story, each subject saw only one of the

four versions (balanced across subjects). We also included a nonsocial control condition (20 unique stories based on a subset of the 80 social stories) in

which the agent was replaced by a non-human object.
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2 ! 2 design (exogenous versus endogenous attention X self agent versus other agent). Finally, we
included a fifth, control condition, consisting of nonsocial stories in which the agent was replaced by

an inanimate object, that, like attention, has a source and a target, such as a camera or a light source
(‘In a closet, a light shines on a red tie. . .’).

We made four predictions. Our first, central prediction was inspired by the Pesquita et al., 2016
study described above. We hypothesized that participants would encode the type of attention in the
story (exogenous versus endogenous), and that this encoding would be evident in some subset of

the areas classically involved in theory of mind. Previous experiments on theory of mind typically
recruited a network of cortical areas including the temporoparietal junction (TPJ), the superior tem-

poral sulcus (STS), the medial prefrontal cortex (MPFC), and the precuneus (Gallagher et al., 2000;
Saxe and Kanwisher, 2003; van Veluw and Chance, 2014; Vogeley et al., 2001). This first predic-
tion, that the social cognition network will encode the exogenous-versus-endogenous distinction,

represents the main, novel contribution of this study. Previous studies have used MVPA to decode
various aspects of other people’s mental states from activity in social brain areas, such as their
beliefs (Koster-Hale et al., 2017), intentions (Koster-Hale et al., 2013), and perceptual source (Kos-

ter-Hale et al., 2014). To the best of our knowledge, this investigation is the first to test whether
activity in social brain areas can decode other people’s attentional states.

Our second prediction was that participants would encode information about the agent in the
story (self versus other), and that this encoding would again be evident in some subset of the areas
classically involved in theory of mind. Self-versus-other encoding has been examined in previous

studies, and found to be reflected in the theory-of-mind network (e.g. Northoff et al., 2006;
Ochsner et al., 2004; Passingham et al., 2010; Qin and Northoff, 2011; van Veluw and Chance,

2014). This second prediction represents a test of whether our present paradigm, using subtle word-
ing differences between similar sentences, can produce results consistent with previous findings.

Third, we predicted that participants would encode information associated with the interaction
between the two factors. We predicted that at least some subset of the areas in the theory-of-mind
network may encode the type of attention (exogenous versus endogenous) to a different extent in
self-related stories as compared to other-related stories.

Fourth and finally, we tested for brain regions that encoded the distinction between social stories
(with human agents) and nonsocial stories (with only non-agent objects). We predicted that this

social-versus-nonsocial encoding would again be evident in the same network of brain regions noted
above, that are known to be involved in theory of mind. This final analysis served as a control to
check on the validity of the story stimuli and confirm that they engaged social cognition as

expected.

Results

Behavioral results
Participants answered a simple true-or-false probe question after each story (e.g. ‘Emma is on a
bus’), to ensure alertness throughout the experiment. Although the MRI results depended on the

time interval during the reading of the story and not during the reading or answering of the probe
question, the behavioral response to the probe question may give some indication of whether the

story conditions were well balanced. If one type of story was more difficult to process, or caused the
subjects to think more deeply about the character in the story, that difference may be reflected in a
different accuracy or latency in responding to the subsequent probe question. However, no signifi-

cant differences were observed in accuracy (F3,93=0.15, p=0.930, ANOVA) or latency (F3,93=1.66,
p=0.181, ANOVA) among the four social story conditions (Table 1).

When participants responded to the probe questions after non-social, control stories, versus
when they responded to the probe questions after social stories, no significant difference in accuracy
was found (t31 = "1.83, p=0.077), although as expected, a slightly longer latency was observed after

non-social stories than after social stories (t31 = 9.18, p<0.001; see Table 1). The reason for the
latency difference is almost certainly because the probe statements in the non-social condition were

on average two words longer than those in the social conditions (eight words versus six words),
because the character in the probe statements ("You . . ." or "Emma . . .") was replaced by an object
that required more words to describe (e.g. "The surveillance camera . . ."). One might therefore
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expect that it took participants a little longer to read the non-social probe statements compared to

the social ones. We suggest that this subtle difference in latency during the post-story question

period is unlikely to have affected the comparison of MRI activity between social and non-social con-

ditions, since the relevant MRI activity was evoked by the time period during the reading of the

story, not during the reading and answering of the questions.

Prediction 1
We hypothesized that participants would encode the attentional state of the agents in the stories in

enough detail to distinguish between endogenous and exogenous attention, even though the differ-

ence between the story types was extremely subtle – only a few words that very slightly altered the

semantic meaning of the sentences. We made the strong prediction that decoding would be found

within the set of brain areas typically included in the theory-of-mind cortical network. Figure 2 shows

six ROIs within the theory-of-mind network, based on a meta-analysis of previous theory-of-mind

studies (van Veluw and Chance, 2014). Figure 3A shows the results (see Table 2 and Figure 3—fig-

ure supplement 1 for more details). Decoding accuracy for endogenous versus exogenous stories

was significantly above chance for the left TPJ, and the significance of the left TPJ decoding survived

a multiple comparison correction for the six ROIs (mean decoding accuracy 52.9%, 95% CI 50.7–

55.2, puncorrected = 0.0046, pFDR-corrected = 0.0276). For the sake of a thorough evaluation, because

different researchers have defined slightly different locations for the TPJ, we replicated the finding

of a significant decoding in the left TPJ using three additional, previously reported theory-of-mind

ROIs in the left TPJ (Mar, 2011; Molenberghs et al., 2016; Schurz et al., 2014), suggesting that

the effect is robust (Figure 3B and Figure 3—figure supplement 2). The results therefore show that

activity in the left TPJ allowed for significant decoding of the attentional state – exogenous versus

endogenous – of agents in a story.
We then used a searchlight analysis over the whole brain to test whether any further areas may

have significantly decoded the endogenous-versus-exogenous distinction. It should be noted that an

Table 1. Behavioral results.
Mean accuracy and latency for the probe question that was presented after each story, for each of the five experimental conditions.
The mean accuracy and latency across all social story conditions are also reported.

Story type Self-endo Self-exo Other-endo Other-exo Non-social Social (all)

Accuracy (%) Mean 94.2 93.4 93.1 93.4 90.0 93.6

SEM 1.9 1.8 1.6 1.9 2.2 1.4

Latency (ms) Mean 1613 1601 1667 1653 1957 1634

SEM 54 56 46 56 63 49

TPJ
MPFC

STS

Precuneus

Figure 2. Regions of interest (ROIs). Six ROIs were defined based on peaks reported in an activation likelihood

estimation meta-analysis of 16 fMRI studies involving theory-of-mind reasoning (van Veluw and Chance, 2014).

The ROIs consisted of 10-mm-radius spheres centered on peaks in the bilateral temporoparietal junction (TPJ) and

superior temporal sulcus (STS), and two midline structures: the precuneus and medial prefrontal cortex (MPFC).

Here, the TPJ and STS ROIs on the left side are shown.
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Figure 3. Decoding attention type, agent, and the interaction between them, in six brain areas. For definition of

ROIs, see Figure 2. Each point shows mean decoding accuracy. Error bars show SEM. Red horizontal line indicates

chance level decoding. Significance indicated by * (p<0.05) and ** (p<0.01), based on permutation testing (all

significant p values also survived FDR correction for multiple comparisons across all six ROIs [all significant

corrected ps <0.05]). (A) The ability of a classifier, trained on BOLD activity patterns within each ROI, to decode

endogenous (endo) versus exogenous (exo) attention. (B) To test the robustness of the endo-versus-exo decoding

in the left TPJ, we replicated the results in three ROIs derived from theory-of-mind neuroimaging meta-analyses

(Mar, 2011; Molenberghs et al., 2016; Schurz et al., 2014) other than the one used for the main analysis

(van Veluw and Chance, 2014) (see Figure 3—figure supplement 2 for details). (C) The cluster shown had the

highest decoding accuracy in the whole-brain, searchlight analysis, for the endo-versus-exo comparison. No

clusters in this analysis survived brain-wide correction for multiple comparisons. We here report clusters surviving

the conventional uncorrected voxelwise threshold p<0.001, for purely descriptive purposes. See Figure 3—figure

supplement 3 and Supplementary file 1 for details. (D) Decoding accuracy for agent (self versus other). (E)
Decoding accuracy for the interaction between type of attention and agent. (F) The ability of a classifier, trained to

Figure 3 continued on next page
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exploratory searchlight analysis, compared to ROI analyses based on strong predictions, is much

more statistically conservative because of the brain-wide correction for multiple comparisons. Its use-

fulness is that it may reveal any cluster of very strong decoding that was missed by the more sensi-

tive analysis restricted to the ROIs. We found no brain-wide significant clusters of decoding for the

endogenous versus exogenous distinction. However, four clusters survived the uncorrected p<0.001

threshold, and are reported in a purely descriptive manner in Figure 3—figure supplement 3 and

Supplementary file 1. The brain-wide searchlight peak was located in the left posterior STS (decod-

ing accuracy 53.7%, t = 4.21, p<0.001 uncorrected; Figure 3C), at a distance of 20 mm from the cen-

ter of the left TPJ ROI, and coincided with the posterior TPJ (TPJp) subregion as defined by

Bzdok et al., 2013 and Mars et al., 2012.
To control for potential univariate effects that could drive classifier performance, we explored the

endogenous > exogenous and exogenous > endogenous univariate contrasts, which did not reveal

any significant activity within the ROIs (Figure 3—figure supplement 9) or anywhere else in the

brain, not even at the uncorrected threshold p<0.001 (Supplementary file 5). These findings are

compatible with previous studies (e.g. Hassabis et al., 2009) that have demonstrated the superiority

of pattern-sensitive multivariate analyses compared with conventional univariate approaches for

detecting differences in activity between conditions with highly similar macroscopic characteristics.
In addition to these planned analyses, we explored the endogenous-versus-exogenous decoding

within dorsal attention network regions. This analysis was motivated by an alternative hypothesis:

people might simulate the act of attention orienting when reading the exogenous and endogenous

stories, and thus activate the corresponding ventral (exogenous) attention network, to which the TPJ

Figure 3 continued

discriminate attention type in self stories, to decode attention type in other stories, and vice versa (i.e. two-way

cross-classification), based on activity patterns in the left TPJ ROI.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Decoding attention type, agent, and the interaction between the two, within the six ROIs.

Figure supplement 2. Replicating attention type decoding results in additional TPJ ROIs.

Figure supplement 3. Decoding attention type at the whole-brain level.

Figure supplement 4. Decoding agent type at the whole-brain level.

Figure supplement 5. Decoding attention-by-agent interaction at the whole-brain level.

Figure supplement 6. Decoding attention type in the dorsal attention network.

Figure supplement 7. Decoding of attention type generalizes across self-stories and other-stories.

Figure supplement 8. Eye tracking results.

Figure supplement 9. Univariate fMRI results within ROIs.

Table 2. Decoding attention type, agent, and the interaction between the two, within the six ROIs.
For definition of ROIs, see Figure 2. Mean decoding accuracy (%), 95% confidence interval (based on bootstrap distribution), and p
value (based on permutation testing) are shown for each of the six ROIs. Results shown for decoding endogenous (endo) versus exoge-
nous (exo) attention type, self versus other agent type, and the interaction between the two variables. * indicates significant p values
that survived correction for multiple comparisons across all six ROIs (FDR-corrected p<0.05).

L TPJ R TPJ L STS R STS MPFC Precuneus

Endo vs. Exo Mean accuracy 52.9% 51.4% 50.4% 48.0% 49.5% 50.2%

95% CI 50.7–55.2 49.1–53.9 47.8–52.8 45.9–50.1 47.6–51.4 48.5–51.8

P value 0.0046* 0.1148 0.3518 0.9547 0.6439 0.4428

Self vs. Other Mean accuracy 53.0% 51.0% 52.3% 51.3% 52.6% 52.7%

95% CI 50.1–55.6 48.5–53.4 50.6–54.1 48.9–54.1 50.5–55.0 50.4–55.0

P value 0.0053* 0.1974 0.0204* 0.1241 0.0105* 0.0099*

(Self vs. Other) ! (Endo vs. Exo) Mean accuracy diff 1.6% 1.5% 2.0% "3.0% 2.5% 0.6%

95% CI "2.7–6.3 "3.6–6.5 "2.7–6.3 "7.4–1.1 "2.3–6.7 "5.5–5.5

P value 0.2430 0.2639 0.1967 0.8944 0.1414 0.3900
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belongs, and dorsal (endogenous) attention network in a ‘mirror-neuron-like’ fashion (see Discussion

for details). However, this control analysis revealed no significant decoding in any of the dorsal atten-

tion network ROIs (Figure 3—figure supplement 6).

Prediction 2
We hypothesized that participants would process the distinction between the two types of agent in

the stories (self versus other). We made the strong prediction that decoding would be found within

the same set of ROIs in the theory-of-mind cortical network. Figure 3D shows the results (see Table 2

and Figure 3—figure supplement 1 for more details). Decoding accuracy for self versus other sto-

ries was significantly above chance, and survived a multiple comparisons correction, for the left TPJ

(mean decoding accuracy 53.0%, 95% CI 50.1 to –55.6, puncorrected = 0.0053, pFDR-corrected = 0.0210),

left STS (mean decoding accuracy 52.3%, 95% CI 50.6–54.1, puncorrected = 0.0204, pFDR-cor-

rected = 0.0306), MPFC (mean decoding accuracy 52.6%, 95% CI 50.5–55.0, puncorrected = 0.0105,

pFDR-corrected = 0.0210), and precuneus (mean decoding accuracy 52.7%, 95% CI 50.4–55.0, puncor-

rected = 0.0099, pFDR-corrected = 0.0210). These results confirm that the present paradigm, using sto-

ries that are subtly different from each other, can obtain social cognitive results that are consistent

with previous findings.

Prediction 3
We hypothesized that areas in the theory-of-mind network would not only encode the distinction

between endogenous and exogenous attention, but do so to a significantly different extent in self-

related stories than in other-related stories. However, the results showed no significant interaction in

any of the ROIs (Figure 3E, Table 2, and Figure 3—figure supplement 1). Thus, we found no sup-

port for prediction 3.
An alternative hypothesis is that attention type is encoded similarly in self and others. In a post

hoc analysis, we focused on the left TPJ which was the only ROI that showed significant attention

type decoding (Prediction 1), and tested for overlap in attention encoding in self and others using a

two-way cross-classification analysis (see Figure 3F and Figure 3—figure supplement 7). In this

analysis, one classifier was trained to discriminate endogenous versus exogenous self-stories and

tested on other-stories, and another classifier was trained to discriminate endogenous versus exoge-

nous other-stories and tested on self-stories, from which an average cross-classification decoding

accuracy for the left TPJ was obtained. Endogenous-versus-exogenous decoding significantly gener-

alized across self-stories and other-stories (mean decoding accuracy 51.9%, 95% CI 49.9–54.1,

p=0.0393), suggesting at least some degree of overlap in the encoding of attention in others and in

oneself.

Prediction 4
Finally, we asked whether the activity in the theory-of-mind network would distinguish between

social stories and nonsocial stories. This final analysis served as a control to check the validity of the

story stimuli and confirm that they engaged social cognition as expected. We expected a signal of

much greater magnitude in this analysis than in the analyses described above. The reason is that, as

noted above, the types of social stories differed from each other by only a few words, and were

nearly identical in semantic content; thus any brain signal reflecting those differences is expected to

be subtle. The distinction between social and nonsocial stories, however, was much greater semanti-

cally, and therefore the evidence of decoding in the brain is expected to be of greater magnitude.
Figure 4 shows the results (see Table 3 and Figure 4—figure supplement 2 for more details).

The results are separated into six ROIs, and for each ROI, separated into four individual analyses,

corresponding to each of the four main social conditions contrasted with the nonsocial

control. Decoding accuracy was significantly greater than chance in almost all analyses across the six

ROIs. The right STS showed the least consistent evidence of decoding. The TPJ bilaterally and the

precuneus showed the most consistent evidence of decoding. These results show strong evidence of

decoding of the social versus nonsocial stimuli in the known theory-of-mind, cortical network.
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Discussion
This study analyzed brain activity while people read stories about agents attending to objects in the

environment. We examined whether specific brain areas could decode information about the type of

attention referenced in the story (exogenous versus endogenous), and about the type of agent in

the story (whether the agent was the subject reading the story or a different person). We hypothe-

sized that if the brain constructs a model of attentional state that is used in social cognition, then

areas of the brain known to be involved in social cognition should be able to distinguish between
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endogenous-other, and exogenous-other) versus the nonsocial control. Each bar shows mean decoding accuracy,

error bars show SEM, red horizontal line shows chance level decoding. Significance indicated by * (p<0.05), **

(p<0.01), and *** (p<0.001) based on permutation testing (all but one of the significant p values also survived FDR

correction for multiple comparisons across all six ROIs; see Table 3 for numerical details).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Decoding social versus nonsocial stories at the whole-brain level.

Figure supplement 2. Decoding social versus nonsocial stories within the six ROIs.

Table 3. Decoding social versus nonsocial stories within the six ROIs.
For definition of ROIs, see Figure 2. Mean decoding accuracy (%), 95% confidence interval (based on bootstrap distribution), and p
value (based on permutation testing) are shown for each of the six ROIs. Results shown for each of four social story conditions (endog-
enous-self, exogenous-self, endogenous-other, and exogenous-other) versus the nonsocial control. * indicates significant p values that
survived correction for multiple comparisons across all six ROIs (FDR-corrected p<0.05).

L TPJ R TPJ L STS R STS MPFC Precuneus

Endo-Self vs. nonsocial Mean accuracy 58.5% 56.7% 53.0% 50.9% 55.2% 54.6%

95% CI 55.5–61.6 53.5–59.8 49.3–56.8 47.5–54.0 52.3–58.0 51.5–57.7

p value 0.0001* 0.0001* 0.0338* 0.2703 0.0026* 0.0027*

Exo-Self vs. nonsocial Mean accuracy 60.7% 56.5% 56.3% 53.6% 54.5% 55.7%

95% CI 57.0–64.4 53.7–58.8 53.5–59.0 50.5–56.6 51.7–57.1 51.9–59.4

p value 0.0001* 0.0002* 0.0001* 0.0179* 0.0044* 0.0001*

Endo-Other vs. nonsocial Mean accuracy 58.4% 52.7% 53.5% 52.2% 53.4% 55.4%

95% CI 55.9–60.9 49.6–55.9 51.1–55.9 48.8–55.0 49.5–57.7 52.6–58.2

p value 0.0001* 0.0497 0.0147* 0.0969 0.0219* 0.0014*

Exo-Other vs. nonsocial Mean accuracy 56.7% 54.2% 53.1% 51.5% 53.4% 55.2%

95% CI 53.8–59.8 51.1–57.3 50.4–55.9 49.1–54.0 49.8–56.7 52.0–58.5

p value 0.0002* 0.0065* 0.0319* 0.1901 0.0197* 0.0012*
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the two types of attention, exogenous and endogenous, represented in the stories. Our main analy-

sis confirmed the hypothesis: the left TPJ showed significant decoding of information about endoge-
nous versus exogenous attention. The finding is, arguably, remarkable, given that the semantic and

wording difference between the two story types is extremely subtle.
These results support a new and growing body of evidence that the human brain constructs a

model of attention to aid in theory of mind (Guterstam et al., 2019; Guterstam and Graziano,
2020b; Kelly et al., 2014; Pesquita et al., 2016; Vernet et al., 2019). The model includes informa-

tion about attention that is deeper and more complex than just gaze direction or an identification of

the attended object. At least one aspect of attention incorporated into the model appears to be the
manner in which attention moves to an object: endogenously (internally directed) or exogenously

(externally induced). The processing of the model appears to engage the theory-of-mind cortical

network. The left TPJ showed the strongest decoding result.
Why should the TPJ in particular have shown involvement in decoding someone else’s attention

state, rather than areas in the STS that are known for responding to the gaze direction of others

(Marquardt et al., 2017)? As noted in the Introduction, we suggest that modeling someone else’s

attention, and processing someone else’s gaze direction, are not the same. Gaze is only one of
many cues that can be integrated to constrain a model of someone else’s attention. In Kelly et al.,

2014, in a task in which participants judged the attention state of a cartoon, the TPJ was not active
in association with gaze direction, and also not active in association with facial expression; but both

left and right TPJ were active in association with the integration of the two cues, gaze and expres-

sion, in order to judge the cartoon’s attentional state. The current finding of significant decoding in
the left TPJ is consistent with that prior finding.

It is not clear why the left hemisphere showed stronger activity than the right in the present task.
Social cognition tasks often activate the TPJ bilaterally, but typically engage the right TPJ more

(Saxe and Wexler, 2005). One speculation is that some aspect of the present task, perhaps explic-
itly instructing people that the task was a test of reading comprehension, caused an emphasis on lin-

guistic processing, biasing the activity toward the left hemisphere. Other explanations for the left-

hemisphere bias may also be possible.
One alternative interpretation of the present finding in the TPJ is that people simulated attention

orienting when reading the stories, and activated the corresponding dorsal (endogenous) and ven-

tral (exogenous) attention networks in a ‘mirror-neuron-like’ fashion. Under this hypothesis, the TPJ,

as part of the ventral attention network, was activated when reading the exogenous stories, and the
dorsal attention network (consisting of the frontal eye fields, intraparietal sulcus, and middle tempo-

ral complex) should be active in association with reading the endogenous stories (Corbetta et al.,

2008; Corbetta and Shulman, 2002; Fox et al., 2006). However, a control analysis showed that
none of these dorsal attention network regions significantly decoded information concerning the

attention type in the stories (Figure 3—figure supplement 6), which is incompatible with the atten-
tion-orienting simulation account of the TPJ result. Our findings are thus more consistent with the

notion that the TPJ is involved in constructing a rich, perhaps implicit model of attention that may

assist in social cognition (Graziano and Kastner, 2011; Guterstam et al., 2020; Guterstam and
Graziano, 2020a; Kelly et al., 2014). We are not suggesting, however, that the possible involve-

ment of the TPJ in modeling one’s own and others’ attention, and the involvement of the TPJ in the

control of attention, is a coincidence. We suggested in previous work (Graziano and Webb, 2015)
that a rich model of attention may be of benefit in the control of attention.

A second, alternative interpretation of the present results is that the exogenous sentences might
make the reader focus more on the object in the story (thus engaging less mentalizing), whereas the

endogenous sentences might make the reader focus more on the character’s mental act of attending
(thus engaging more mentalizing). In that interpretation, the TPJ shows a significant decoding result

because it becomes more active in the endogenous story type, due to more mentalizing cognition.

Although this possible explanation of the TPJ decoding results is difficult to exclude, we believe it is
unlikely. First, if endogenous stories simply engaged more mentalizing than exogenous stories, and

thus caused more activity in the TPJ, our univariate analysis should have found more activity in the
TPJ to endogenous stories. It did not (see Supplementary file 5). We found no evidence that a sim-

ple difference in the amount of mentalizing between exogenous and endogenous stories affected

the overall amount of activity in the TPJ or anywhere else in the brain. Although the pattern of activ-
ity in the left TPJ clearly contains information about the exogenous-endogenous distinction, that
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information is not in the form of a simple increase in activity during the endogenous stories. Second,

it is not clear that subjects should mentalize more in the endogenous story type than in the exoge-
nous story type. When reading that ‘Alice looks for the red ball,’ subjects might wonder why, and

think about Alice’s mental state. When reading that ‘Alice notices the red ball,’ subjects might again
wonder why the ball was of enough significance to be capturing her notice, or what mental reaction

she experiences when noticing that apparently unanticipated object. Both story types invite mental-

izing, alhough one focuses on an endogenous process of attention and the other on exogenous
attention. Third, the probe task was designed to limit readers from speculating too much about the

deeper meaning of the stories by asking only about literal details and never about the internal states
of the characters. Thus, the subjects had an incentive to focus on the same physical aspects of the

story in both the exogenous and endogenous conditions. Fourth, and finally, prior studies suggest

that if an experimental and a control story both include human agents with potential thoughts, then
subjects automatically mentalize in both story types, and the contrast between the story types will

tend not to show a differential degree of activity in theory-of-mind cortical areas, especially in the

TPJ (Saxe and Kanwisher, 2003). It is likely that, in our case, subjects cannot help mentalizing about
the characters in both story types. We acknowledge that any story stimuli are always so complex

that a variety of unintended, subtle differences may affect the results, but for the reasons listed
here, we argue that a difference in the overall amount of mentalizing during endogenous versus

exogenous stories is unlikely to explain the present results in the TPJ. The results point to the left

TPJ processing different information in the exogenous and endogenous story types, but not a differ-
ence in overall amount of activity.

In addition to the endogenous-versus-exogenous comparisons, we also analyzed brain areas
involved in self-versus-other encoding. We found evidence of self-versus-other encoding in the left
TPJ, left STS, MPFC, and precuneus. The MPFC and precuneus have been previously implicated in

self processing (Northoff et al., 2006; Ochsner et al., 2004; Passingham et al., 2010; Qin and

Northoff, 2011; van Veluw and Chance, 2014), and the TPJ is consistently activated in fMRI studies
involving self-recognition (van Veluw and Chance, 2014) and first-person perspective taking

(Ionta et al., 2011). These results lend confidence to the present paradigm, showing that even the

very subtle differences between our story stimuli were able to reveal cortical results consistent with
previous studies.

Contrary to our prediction 3, we found no evidence for an interaction between attention type
and agent type decoding in the theory-of-mind ROIs. (As noted in the Supplementary Information,
during an exploratory searchlight analysis, we also found no evidence of an interaction effect in any

other brain area.) Although it is possible that our paradigm was simply not sensitive enough to

detect subtle interaction effects, these results suggest that the brain encodes information about
attention type in a similar manner in the self and in others. In light of previous results showing that

the attribution of sensory awareness to others and to oneself have a shared representation in the

TPJ (Kelly et al., 2014), we directly tested this notion in a post hoc cross-classification analysis focus-
ing on the left TPJ, which was the only region showing significant decoding of attention type. We

found that endogenous-versus-exogenous decoding significantly generalized across self-stories and
other-stories (Figure 3—figure supplement 7), suggesting that there is an overlap in brain mecha-

nisms that participate in the encoding of attention in others and in encoding of attention in the self.
Finally, significant decoding of the social-versus-nonsocial distinction was obtained across most of

the theory-of-mind ROIs. This finding confirmed the validity of the paradigm, and was expected
based on previous experiments of the theory-of-mind network (Gallagher et al., 2000; Saxe and

Kanwisher, 2003; van Veluw and Chance, 2014; Vogeley et al., 2001).
The use of a story-reading paradigm allowed us to systematically manipulate the kind of attention

represented in the stimulus while keeping other experimental factors close to identical. The endoge-
nous and exogenous story versions differed only with respect to a few key words specifying the type

of attention, while the rest of the stories were semantically the same. The absence of any univariate
effect within the ROIs or anywhere else in the brain, even at a liberal uncorrected threshold, confirm

that the stimuli were well matched (Supplementary file 5). To avoid cognitive bias or expectation

effects, the probe task performed by the subjects concerned details about the spatial context or the
objects in the stories, effectively distracting subjects from the description of attention. We also spec-

ulate that this design of the probe task minimized the theoretical risk of the reader focusing on
slightly different aspects of the story in the endogenous and exogenous conditions (e.g. focusing
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more on the mental act of attending in endogenous stories, and more on the attention-grabbing
object in the exogenous stories), because the task ‘forced’ the reader to focus on processing the
spatial context and the object descriptions equally in both conditions. A post-scan questionnaire
confirmed that none of the subjects came close to figuring out the purpose of the experiment (which
they had been told was a ‘Reading Comprehension Experiment’). The finding of brain areas that sig-
nificantly decoded the type of attention, despite the distinction between endogenous and exoge-
nous attention being subtle and task-irrelevant, suggests that the human brain automatically, and
possibly also implicitly (Pesquita et al., 2016), constructs a model of an agents’ attention that speci-
fies at least some dynamic aspects of how that attention is moving around the scene.

Materials and methods

Subjects
Thirty-two healthy human volunteers (12 females, 30 right-handed, aged 18–52, normal or corrected
to normal vision) participated in the study. Subjects were recruited either from a paid subject pool,
receiving 40 USD for participation, or from among Princeton undergraduate students, who received
course credits as compensation. In the subject recruitment material, the experiment was described
as a ‘Reading Comprehension Study.’ All subjects provided informed consent and all procedures
were approved by the Princeton Institutional Review Board.

Experimental setup
Before scanning, subjects were instructed and then shown three sample trials (which were not part
of the stories presented in the subsequent experiment) on a laptop computer screen. All subjects
gave the correct response to all three trials on the first try, indicating they had understood the
instructions adequately. During scanning, the subjects laid comfortably in a supine position on the
MRI bed. Through an angled mirror mounted on top of the head coil, they viewed a translucent
screen approximately 80 cm from the eyes, on which visual stimuli were projected with a Hyperion
MRI Digital Projection System (Psychology Software Tools, Sharpsburg, PA, USA) with a resolution of
1920 ! 1080 pixels. A PC running MATLAB (MathWorks, Natick, MA, USA) and the Psychophysics
Toolbox (Brainard, 1997) was used to present visual stimuli. A right hand 5-button response unit
(Psychology Software Tools Celeritas, Sharpsburg, PA, USA) was strapped to the subjects’ right
wrist. Subjects used the right index finger button to indicate a true response, and the right middle
finger to indicate a false response during the probe phase of each trial.

Experimental conditions and stimuli
Five experimental conditions were included. Subjects were presented with short stories (2–3 senten-
ces, average word count = 24) describing a scene in which an agent, which was either the subject
him-/herself (self) or another person (other), directed attention to something in the external world
endogenously (e.g., ‘X is attentively looking for Y’) or exogenously (e.g., ‘X’s attention is captured
by Y’). These four conditions made up a 2 ! 2 factorial design: attention type (endogenous versus
exogenous) X agent (self versus other). In addition, we included a control condition featuring stories
in which the agent was substituted by a non-human object. In each trial, after a 9–11 s inter-trial
interval, the story was presented for 10 s in easily readable, white text on a black background, at the
center of the screen, after which a probe statement was shown for 4 s, to which the subjects
responded either true or false by button press. See Figure 1 for details, and Supplementary file 6
for all stories.

Each subject ran 100 trials and thus saw 100 stories: 80 social stories and 20 non-social control
stories. The 80 social stories were constructed as follows. We began with 80 unique short stories.
For each story, four versions were constructed, one for each of the factorial conditions (Figure 1B).
To keep the story versions as semantically similar as possible, we made minimal changes to the
wordings. To distinguish the self and other versions, we substituted the word ‘you’ with a name (e.g.
‘Karen’) and the word ‘your’ with ‘his’ or ‘her’. The names in the stories were selected from a list of
the 100 most popular given names for male and female babies born during the years 1919–2018 in
the United States, which is published by the Social Security Administration (https://www.ssa.gov/
oact/babynames/decades/century.html). Half of the names were masculine, half feminine. To
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distinguish the endogenous and exogenous story versions, we used different wording for the part of

the story where the agent (X) is related to the object (Y). In the endogenous versions, we used for-

mulations such as: ‘X is trying to find Y,’ ‘X is trying to spot Y,’ or ‘X is looking attentively for Y.’ In

the exogenous versions, we used formulations such as: ‘X’s eyes are drawn to Y,’ ‘X’s gaze is cap-

tured by Y,’ or ‘X’s attention is captured by Y.’ We matched the average number of words across all

four conditions (24 words). The number of stories that included the words ‘attention’ or ‘attentively’

was balanced between the endogenous and exogenous categories (43 stories in each). Among the

80 stories, for each subject, 20 were randomly selected to be used in the endogenous-self version;

20 in the endogenous-other version; 20 in the exogenous-self version; 20 in the exogenous-other

version. Thus, for the example story shown in Figure 1B, each subject saw only one of the four ver-

sions. In this manner, each subject saw 80 social stories, 20 of each type, balanced for as many prop-

erties as possible other than the two factors that were manipulated.
Finally, we constructed 20 additional stories for the non-social control condition (Figure 1B). To

keep the control stories as semantically similar as possible to the social stories, we based them on a

subset of the 80 original stories. Crucially, the agent in the original story was substituted with a non-

human object, such as a camera or a spotlight, that has a source and a target just as attention does.

For instance, the original story, "You are in a bike shop, and numerous bikes hang on one of the

walls. You are attentively looking for that red Italian sports bike", was adapted to the non-social con-

dition by substituting the agent with a spotlight: "In a bike shop, on one of the walls, hangs numer-

ous bikes. A bright spotlight is shining on a red Italian sports bike". The average number of words of

the non-social stories (24 words, standard deviation = 3) was matched with the attention stories.
The purpose of the probe statement at the end of each trial was to ensure that subjects carefully

read the stories. Each statement described one detail of the preceding story that could be either

true or false. We restricted the probe statements to the spatial context of the story (place probe:

e.g. ‘Emma is on a bus’) or the object being described (object probe: e.g. ‘The Van Gogh painting

has sunflowers’) in order to avoid alerting subjects to the focus of the experiment on theory of mind

and attention. Half of the probe statements were place probes and half object probes. Within both

the place and the object probes, half were true and half were false. The probe was on screen for 4 s,

during which subjects were required to indicate whether the statement was true or false by button

press.
The experiment consisted of 10 runs of approximately 4 min each. In each run, the five conditions

were repeated two times, yielding a total of 10 trials per run. The trial order was randomized, with

the limitation that two consecutive trials could not belong to the same condition. Each run included

18 s of baseline before the onset of the first trial and 12 s of baseline after the offset of the last trial.

Post-scan questionnaire
At the end of the scanning session, subjects were asked what they thought the purpose of the

experiment was and what they thought it was testing.

fMRI data acquisition
Functional imaging data were collected using a Siemens Prisma 3T scanner equipped with a 64-chan-

nel head coil. Gradient-echo T2*-weighted echo-planar images (EPI) with blood-oxygen dependent

(BOLD) contrast were used as an index of brain activity (Logothetis et al., 2001). Functional image

volumes were composed of 54 near-axial slices with a thickness of 2.5 mm (with no interslice gap),

which ensured that the entire brain excluding cerebellum was within the field-of-view in all subjects

(54 ! 78 matrix, 2.5 mm x 2.5 mm in-plane resolution, TE = 30 ms, flip angle = 80˚). Simultaneous

multi-slice (SMS) imaging was used (SMS factor = 2). One complete volume was collected every 2 s

(TR = 2000 ms). A total of 1300 functional volumes were collected for each participant, divided into

10 runs (130 volumes per run). The first three volumes of each run were discarded to account for

non-steady-state magnetization. A high-resolution structural image was acquired for each participant

at the end of the experiment (3D MPRAGE sequence, voxel size = 1 mm isotropic, FOV = 256 mm,

176 slices, TR = 2300 ms, TE = 2.96 ms, TI = 1000 ms, flip angle = 9˚, iPAT GRAPPA = 2). At the end

of each scanning session, matching spin echo EPI pairs (anterior-to-posterior and posterior-to-ante-

rior) were acquired for blip-up/blip-down field map correction.
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FMRI preprocessing
Results included in this manuscript come from preprocessing performed using FMRIPREP version

1.2.3 (Esteban et al., 2019) (RRID:SCR_016216), a Nipype (Gorgolewski et al., 2011) (RRID:SCR_

002502) based tool. Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity)

using N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using antsBrainExtrac-

tion.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM 152 Nonlinear Asym-

metrical template version 2009c (Fonov et al., 2009) (RRID:SCR_008796) was performed through

nonlinear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al., 2008) (RRID:SCR_

004757), using brain-extracted versions of both T1w volume and template. Brain tissue segmentation

of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-

extracted T1w using fast (Zhang et al., 2001) (FSL v5.0.9, RRID:SCR_002823).
Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 1996) (RRID:

SCR_005927) and motion corrected using mcflirt (FSL v5.0.9) (Jenkinson et al., 2002). This was fol-

lowed by co-registration to the corresponding T1w using boundary-based registration (Greve and

Fischl, 2009) with six degrees of freedom, using flirt (FSL). Motion correcting transformations,

BOLD-to-T1w transformation and T1w-to-template Montreal Neurological Institute (MNI) warp were

concatenated and applied in a single step using antsApplyTransforms (ANTs v2.1.0) using Lanczos

interpolation.
Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014) (RRID:SCR_001362)

principally within the BOLD-processing workflow. For more details of the pipeline see https://fmri-

prep.readthedocs.io/en/latest/workflows.html.

Testing prediction 1
The purpose of the first analysis was to determine whether the brain encoded information concern-

ing the type of attention (endogenous or exogenous) present in the stories. For this analysis, we

used MVPA, which tests whether patterns of brain activity can be used to decode the distinction

between two conditions. It is a more sensitive analysis than the more common, simple subtraction

methods. The reason for using this sensitive measure is that the difference between exogenous and

endogenous trial types was extremely subtle. Both trial types engaged social cognition, and there-

fore might cancel each other out in a simple subtraction. The stimuli were nearly identical, differing

only in a few words that indicated the type of attention used by the agent in the story. In addition,

the type of attention featured in the story was irrelevant to the task performed by the subject. To

accommodate the subtlety of the distinction between conditions, we designed the study to use

MVPA. We hypothesized that with MVPA, brain activity would carry information about the endoge-

nous versus exogenous distinction; and that decoding would be evident in regions of interest (ROIs)

within the network of areas typically found to be involved in social cognition.
We defined our ROIs as spheres centered on the statistical peaks reported in an activation likeli-

hood estimation (ALE) meta-analysis of 16 fMRI studies (including 291 subjects) involving theory-of-

mind reasoning (van Veluw and Chance, 2014), in accordance with generally accepted guidelines in

ROI analysis (Poldrack, 2007). The ROIs are shown in Figure 2. The peaks were located in six areas:

the left TPJ (Montreal Neurological Institute [MNI]: "52,–56, 24), right TPJ (MNI: 55,–53, 24), left

STS (MNI: "59,–26, "9), right STS (MNI: 59,–18, "17), MPFC (MNI: 1, 58, 19), and the precuneus

(MNI: "3,–56, 37). The radius of the ROI spheres was 10 mm, corresponding to the approximate vol-

ume (4000 mm3) of the largest clusters (TPJ and MPFC) reported in van Veluw and Chance, 2014.

The same sphere radius was used for all ROIs.
The fMRI data from all participants were analyzed with the Statistical Parametric Mapping soft-

ware (SPM12) (Wellcome Department of Cognitive Neurology, London, UK) (Friston et al., 1994).

We first used a conventional general linear model (GLM) to estimate regression (beta) coefficients

for each individual trial (i.e. 100 regressors), focusing on the 10 s story presentation phase of each

trial. One regressor of no interest modeled the 4 s probe statement phase across conditions. Each

regressor was modeled with a boxcar function and convolved with the standard SPM12 hemody-

namic response function. In addition, ten run-specific regressors controlling for baseline differences

between runs, and six motion regressors, were included. The trialwise beta coefficients for the

endogenous and exogenous conditions (i.e. 80 beta maps) were then submitted to subsequent mul-

tivariate analyses (Haxby et al., 2001).
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The MVPA was carried out using The Decoding Toolbox (TDT) version 3.999 (Hebart et al.,
2014) for SPM. For each subject and ROI, we used linear support vector machines (SVMs, with the

fixed regularization parameter of C = 1) to compute decoding accuracies. To ensure independent

training and testing data sets, we used leave-one-run-out cross-validation approach. For each fold,

the betas across all training runs were normalized relative the mean and standard deviation, and the

same Z-transformation was applied to the betas in the left-out test run (Misaki et al., 2010). An

SVM was then trained to discriminate activity patterns belonging to the endogenous or exogenous

trials in nine runs, and then tested on the left-out run, repeated for all runs, resulting in a run-aver-

age decoding accuracy for each ROI and subject.
For statistical inference, the true group mean decoding accuracy was compared to a null distribu-

tion of group mean accuracies obtained from permutation testing. The same MVPA was repeated

within each subject and ROI using permuted condition labels (10,000 iterations). A p value was com-

puted as (1+the number of permuted group accuracy values > true value)/(1+the total number of

permutations). To control for multiple comparisons across the six ROIs, we used the false discovery

rate (FDR) correction (Benjamini and Hochberg, 1995). In addition, we also computed a bootstrap

distribution around the true group mean accuracy by resampling individual-subject mean accuracies

with replacement (10,000 iterations), from which a 95% confidence interval (CI) was derived

(Nakagawa and Cuthill, 2007). A corrected p value < 0.05 in combination with a 95% CI that does

not cross chance level were interpreted as a significant decoding effect at the group level

(Nakagawa and Cuthill, 2007).
In addition, as further exploratory statistics beyond the targeted hypotheses of this study, we

used a whole-brain searchlight analysis (Kriegeskorte et al., 2006) to test for possible areas of

decoding outside the ROIs. This searchlight analysis is described in the Supplementary Information

(Supplementary file 1–4 and 7, Figure 3—figure supplements 3–5, and Figure 4—figure supple-

ment 1).

Testing prediction 2
The purpose of the second analysis was to determine whether the brain encoded information con-

cerning the type of agent (self versus other) present in the stories. The analysis methods were the

same as for testing hypothesis 1, except that for regressors of interest we used the self-related and

other-related trials, collapsed across the type of attention (exogenous or endogenous). Just as for

hypothesis 1, we tested the six defined ROIs within the theory-of-mind network.

Testing prediction 3
The purpose of the third analysis was to test for an interaction between the two variables (endoge-

nous versus exogenous, and self versus other). We used MVPA to test whether the decoding for the

type of attention was significantly different between the self-related and the other-related stories.

The analysis methods were similar to those used for testing hypotheses 1 and 2, except in the follow-

ing ways. We computed two MVPA decoding results, the first for distinguishing endogenous-self

from exogenous-self stories, the second for distinguishing endogenous-other from exogenous-other

stories. We then computed the difference between the two decoding results ([endogenous-self ver-

sus exogenous-self] – [endogenous-other versus exogenous-other]) to create a decoding difference

score. Just as for hypotheses 1 and 2, we tested the six defined ROIs within the theory-of-mind net-

work (van Veluw and Chance, 2014).
In a post hoc analysis, we tested for overlap in attention type encoding in self and others in the

left TPJ ROI by using a two-way cross-classification analysis. One classifier was trained to discrimi-

nate endogenous versus exogenous self-stories and tested on other-stories (using a leave-one-run-

out approach), and another classifier was trained to discriminate endogenous versus exogenous

other-stories and tested on self-stories, from which an average cross-classification decoding accuracy

was obtained. Overlap in attention type representations in self and other should be reflected in

above-chance decoding.

Testing prediction 4
The purpose of the fourth analysis was to confirm whether our story stimuli engaged social cognition

and thereby recruited brain areas within the expected theory of mind network. The analysis was
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meant as an added control to check the validity of the paradigm. The analysis methods were similar
to those used for testing hypotheses 1–3, except in the following ways. We computed four MVPA
decoding results: endogenous-self versus nonsocial, endogenous-other versus nonsocial, exoge-
nous-self versus nonsocial, and exogenous-other versus nonsocial. (Because using MVPA to compare
two conditions requires equal numbers of trials in both conditions, it was not possible to use a single
analysis to compare all 80 social trials to the 20 nonsocial trials.) Each analysis represents a separate,
alternative way to assess the social-versus-nonsocial decoding. Just as for hypotheses 1–3, we tested
the six defined ROIs within the theory-of-mind network (van Veluw and Chance, 2014).

Eye tracking analysis
Eye movements were recorded via an MRI-compatible infrared eye tracker (SR Research EyeLink
1000 Plus), mounted just below the projector screen, sampling at 1000 Hz. Before each scanning ses-
sion, a calibration routine on five screen locations was used and repeated until the maximum error
for any point was less than 1˚. The obtained eye position data was cleaned of artifacts related to
blink events and smoothed using a 20 ms moving average. We then built an SVM decoding model
analogue to the cross-validation approach used for the fMRI data, but here based purely on eye
tracking data, to test whether eye movement dynamics alone were sufficient to decode the condi-
tions of interest (endogenous versus exogenous, and self versus other). In keeping with a previous
study (Schneider et al., 2013), we organized the data in the following way. The part of the display
within which the stimuli appeared was divided into an 8 ! 4 grid of 32 equally sized squares. The
grid covered the screen area within which the stories were presented (see red outline in Figure 3—
figure supplement 8), and approximately corresponded to the locations of individual words (four
lines, with eight words per line). For each trial, the proportion of time that the subject fixated within
each square (32 features) and the saccades between those regions (32 ! 32 = 1024 features) was
calculated. These 1056 features, representing information about both where people were looking as
well as saccade dynamics, were then averaged across repetitions for each of the four main condi-
tions within each of the 10 runs, yielding one eye movement feature vector per condition per run
(per subject). The feature vectors were submitted to an SVM classifier (C = 1). Using a leave-one-run-
out approach, the SVM model was trained on endogenous versus exogenous story types, and then
tested in the left-out run. At the group level, the decoding accuracies were tested against chance
level using t-tests. A similar analysis was then performed on the contrast between self-related stories
versus other-related stories. The results showed that endogenous-versus-exogenous and self-versus-
other story types could not be decoded significantly better than chance using the pattern of eye
movement. See Supplementary Information (Supplementary file 7 and Figure 3—figure supple-
ment 8) for the results of the eye-tracking analysis.
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