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Abstract

Motor cortex in the primate brain controls movement
at a complex level. For example, electrical stimulation
of motor cortex on a behavioral time scale can elicit
multi-joint movements that resemble common ges-
tures in the monkey’s behavioral repertoire. How is
this complex control accomplished? It was once hy-
pothesized that motor cortex contains a topographic,
one-to-one map from points in cortex to muscles. It is
now well known that the topography contains a con-
siderable degtee of overlap and that the mapping be-
tween points in cortex and muscles is many-to-many.
However, can a fixed, many-to-many map account for
the complex manner in which motor cortex appears to

control movement? Recent experiments suggest that -

the mapping between cortex and muscles may be of
a higher order than a fixed, many-to-many maps; it
may continuously change depending on propriocep-
tive feedback from the limb. This “feedback remap-
ping” may be a fundamental aspect of motor control,
allowing motor cortex to flexibly control almost any
high-level or low-level aspect of movement.

Introduction

A central issue in the cortical control of movement is

the nature of the map in motor cortex. Neurons in .
motor cortex map in some fashion to muscles in the

periphery, but what are the properties of the map? Is
the map one-to-one, in which each location in cortex
projects to a single muscle? Is it many-to-many, in
which each cortical point connects to many muscles,
and each muscle receives input from many cortical
locations? Is the map a fixed one, or does it change

depending on other sources of input that modulate
the pathways between cortex and muscles?
Anatomically, primary motor cortex has a relatively
direct, descending projection to the muscles. Pyrami-
dal tract neurons in layer V of cortex project to the
spinal cord, where they synapse onto spinal interneu-
rons and in some cases directly onto motoneurons
(He et al. 1993; Landgren et al. 1962; Lemon et al.
2004; Maier et al. 2002; Murray & Colter 1981).

- A range of studies suggest that the neuronal activity

in motor cortex is tightly coupled to muscle output.

- For example, during voluntary movement, the activ-

ity of motor cortex neurons is correlated with muscle
force and muscle activity (Evarts 1968; Holderfer &
Miller 2002; Morrow & Miller 2003). The technique

~of “spike triggered averaging” shows that an action

potential in a neuron in cortex can be followed at
short latency by a transient change in muscle activity
(Cheney & Fetz 1985; Fetz and Cheney 1980; Lemon
etal. 1986; McKiernan etal. 1998). An electrical pulse
applied to a point in motor cortex evokes a reliable,
short latency effect in a specific set of muscles (Cheney
et al. 1985; Maier et al. 1997; Olivier et al. 2001; Park
et al. 2001). For these reasons, it appears that motor
cortex exerts a relatively direct control over muscles.
The mapping from cortex to muscles, however, is
not a punctate, one-to-one map as was once thought
(Foerster 1936; Fulton 1938), but instead a many-to-
many map (Donoghue et al. 1992; Gould et al. 1986;
Jankowska et al. 1975; Kwan et al. 1978; Park et al.
2001; Sanes et al. 1995; Schieber & Hibbard 1993;
Schneider et al. 2001). For example, the firing of a
single neuron in cortex might be positively correlated
with the activity of a set of homonymous muscles and
negatively correlated with a set of antagonist muscles
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(Cheney & Fetz 1985). This functional linking of a
single cortical neuron to many muscles may occur at
a variety of levels. It may be partly the result of lateral
connections within motor cortex (Baker et al. 1998;
Capaday et al. 1998; Gatter et al. 1978; Ghosh &
Porter 1988; Huntley & Jones 1991; Kang et al. 1988;
Kwan et al. 1987; Landry et al. 1980; Matsumura
et al. 1996; Schneider et al. 2002); partly the result
of the divergent projection from single neurons in the
cortex to multiple target neurons in the spinal cord
(Asanuma et al. 1979; Kuang & Kalil 1990; Shinoda
etal. 1976); and partly the result of the propriospinal
and other interneurons within the spinal cord that link
the control of different muscles into functionally use-
ful groups (Bizzi et al. 2000; Jankowska and Hammer
2002; Tantisira et al. 1996). This complexity at ev-
ery level of the pathway from cortex to muscle results
in the many-to-many mapping in which each cortical
neuron influences many muscles and each muscle is
influenced by many cortical neurons.

One hypothesis is that a fixed, many-to-many map-
ping from cortex to muscles provides an essentially
accurate description of the system, and furthermore
can explain how the motor cortex controls movement
in such a complex manner. Neurons in motor cortex

are active in correlation with a range of movement.

parameters including direction of movement of the
hand through space, velocity, force, joint angle, and
arm posture (e.g. Evarts 1968; Caminiti et al. 1990;
Georgopoulos et al. 1986; Georgopoulos et al. 1989;
Kakei et al. 1999; Kalaska et al. 1989; Reina et al.
2001; Scott & Kalaska 1995; Scott & Kalaska 1997;
Sergio & Kalaska 2003). Stimulation of motor cor-
tex on a behavioral time scale can evoke complex,
multijoint movements that appear to match the mon-
key’s normal behavioral repertoire (Cooke & Graziano
2004; Graziano et al. 2002a,b; Graziano et al. 2004).
Can such complex, higher-order control of movement
have as its basis a fixed, many-to-many map from
cortex to muscles?. One model of cortical function
(Todorov 2000) shows thata surprising range of move-
ment parameters can indeed be controlled through a
many-to-many muscle map, once the physical prop-
erties of the muscles are taken into account.
However, a fixed, many-to-many mapping from
cortex to muscles may be an oversimplification. A va-
riety of results suggest that the mapping from cortical
neurons to muscles may change from moment to mo-
ment, depending on feedback information regarding
the kinematic state of the limb (Armstrong & Drew
1985; Bennett & Lemon 1994; Graziano et al. 2004;
Kakei et al. 1999; Lemon et al. 1995; Rho etal. 1999;
Sanes et al. 1992). Proprioceptive signals from the pe-
riphery reach the spinal cord and the cortex, and thus
are in a position to modulate the flow of information

from neurons in cortex to the muscles. The firing of an
output neuron in motor cortex therefore might have
very different consequences, resulting in very differ-
ent patterns of muscle activation, depending on the.
kinematic state of the limb. In this hypothesis, the
mapping from cortical neurons to muscles may not
be fixed, but rather may be continuously remapped.

Feedback remapping might allow for a reconcili-
ation between two views of motor cortex. The first
view is that there is a direct mapping from the cortical
output neurons to the muscles (e.g. Asanuma 1975;
Cheney et al. 1985; Evarts 1968; Holderfer & Miller
2002; Lemon et al. 1986). The second view is that
motor cortex neurons control high-level movement
parameters (Caminiti et al. 1990; Georgopoulos et al.
1986; Georgopoulos et al. 1989; Kakei et al. 1999;
Kalaska et al. 1989; Reina etal. 2001). This debate has
sometimes been termed the “muscles vs movements”
debate. The view of feedback remapping is that there
is indeed a mapping from cortex to muscles, but that
the mapping is continually adjusted on the basis of
kinematic feedback, thereby providing the flexibility
to control almost any high-level or low-level aspect of
movement.

In this view, feedback remapping is a more fun-
damental principle than any specific movement cod-
ing scheme. Finding the “correct” coding scheme by
which motor cortex controls movement, determin-
ing whether that scheme is a velocity code, a force
code, a direction code, or a postural code, may be mis-
guided, since different tasks might require the control
and optimization of different movement parameters
(Todorov & Jordan, 2002).

Examples of Feedback Rema]}ping

Sanesetal. (1992) provided one of the first demonstra-

. tions of proprioceptive feedback changing the map- -

ping between motor cortex and muscles. They used
intracortical microstimulation to map motor cortex in
the rat, and found that by placing the rat’s forelimb in
different postures they could alter the apparent map
of muscles in cortex. For example, when the forelimb
was in an extended posture, the biceps representation
in cortex was enlarged. When the forelimb was in
a flexed posture, the biceps representation in cortex
shrank. This type of change in the cortical represen-
tation of muscles due to proprioceptive feedback has
been obtained in many experiments in humans, mon-
keys, and cats (Armstrong & Drew 1985; Bennett &
Lemon 1994; Graziano et al. 2004; Lemon etal. 1995;
Rho et al. 1999).

Figure 1A shows an example from a recent experi-
ment (Graziano et al. 2004) in which proprioceptive
information about the angle of the elbow joint altered
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FIGURE 1. Cortico-muscle connectivity modulated by proprioceptive feedback. Top: The arm was fixed in four possible
locations in an anesthetized monkey while biphasic stimulation pulses were applied to points in cortex (30 microamps,
15 Hz, 0.2 ms width per phase, negative phase leading). Electromyographic (EMG) activity was recorded in biceps and
triceps. A. EMG activity in triceps evoked by stimulation of one point in primary motor cortex. Vertical line on each
histogram indicates time of biphasic pulse delivered to brain. Time from 0.2 ms before to 1.5 ms after the pulse is removed
from the EMG data to avoid electrical artifact. Each histogram is a mean of 2000-4500 pulses. The stimulation-evoked
activity was modulated by the angle of the joint. Thus the effective connection strength between the stimulated point in cortex
and the muscle was modulated by joint angle. B. EMG activity in biceps and triceps evoked by stimulation of a second example
point in primary motor cortex. Stimulation of this point in cortex could activate the biceps or the triceps depending on the
angle of the joint. One interpretation is that activity at that location in cortex signals the elbow to move from any initial angle
toward an intermediate, final angle. When the elbow is more flexed than the desired final angle, stimulation evokes mainly
triceps activity. When the elbow is more extended than the desired final angle, stimulation evokes mainly biceps activity.
C. EMG activity in biceps and triceps evoked by stimulation of a third example point in primary motor cortex. Stimulation
of this point in cortex activated primarily the biceps. One interpretation is that activity at that location in cortex signals
the elbow to move in a controlled fashion toward flexion. When the elbow is far from a flexed position, stimulation evokes
2 higher level of biceps activity and a greater discrepancy between biceps and triceps activity. When the elbow is near full
flexion, stimulation evokes a lower level of biceps activity and a smaller discrepancy between biceps and triceps activity.
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the effective connectivity between a point in cortex
and the triceps. Here we collected data from an anes-
thetized monkey whose elbow was fixed at several dif-
ferent angles. Stimulation pulses applied to this site
in cortex resulted in a short latency activation of the
triceps. The amount of triceps activation was modu-
lated in a simple, monotonic, roughly linear fashion
by the angle at which the elbow joint was fixed. The
more flexed the elbow, the greater the evoked muscle
activity. -

Itis important to note that the change in evoked ac-
tivity in the triceps was not a result of a length/tension
relationship, in which muscle tension varies with mus-
cle length due to the physical properties of the muscle.
Here we were not measuring the evoked tension in the
muscle, but the evoked electromyographic activity.

It is also important to note that, by using the tech-
nique of stimulus triggered averages (Cheney et al.
1985), the experiment was able to probe a short-
latency (approximately 7 ms) neuronal pathway from
the stimulated site in cortex to the muscle. The modu-
lation caused by elbow angle must have occurred along
this relatively direct pathway. The proprioceptive feed-
back could have modulated various steps along this
pathway, such as altering the stimulation threshold

of the neurons in cortex near the electrode tip, alter-.
ing the circuitry within the spinal cord, or both. For -

example, stretch receptors in the biceps and triceps
might have fed back to the spinal cord and altered the
excitability of the alpha motor neuron pool for the
triceps.

The example in Figure 1A represents a relatively
simple building block, a cortico-muscle connection
that is modulated in a monotonic, roughly linear fash-
ion by joint angle. In the following sections we discuss
how this simple building block might be used to con-
trol highly complex movement parameters.

Remapping a Point in Cortex from
Flexor to Extensor

Figure 1B shows an example in which a point in mo-
tor cortex was remapped from the biceps to the triceps
when the elbow angle was changed (Graziano et al.
2004). Here we stimulated a point in motor cortex
and found a short-latency excitatory response in both
the biceps and triceps. When the elbow was fixed in
an extended posture, activity at that point in cortex
excited the biceps more than the triceps. When the el-
bow was fixed in a flexed posture, activity at that point
in cortex excited the triceps more than the biceps. Es-

sentially, this point in cortex could be functionally

connected to the flexors or to the extensors depend-
ing on the angle of the elbow.

Our interpretation in the present example is that the
pattern of activity is designed to initiate movement of
the elbow toward an intermediate, goal angle, regard-
less of the starting angle. When the arm is initially
extended, the increase in biceps activity should ini-
tiate a flexion. When the arm is initially flexed, the
increase in triceps activity should initiate an exten-
sion. Indeed, when this site in cortex was stimulated
with a 400-ms train of pulses presented at 200 Hz,
and the arm was free to move, the elbow moved to
a partially flexed angle regardless of its starting angle
and then remained at that final posture until the end
of the stimulation train.

In this interpretation, the output neurons at the
stimulated site in cortex did not encode a specific pat-
tern of muscle activity; instead, they encoded move-
ment to a desired posture. Thus a fundamentally
muscle-based map, with the addition of a simple feed-
back remapping rule, can in principle be used to con-
struct a higher-order, postural code for movement.

Movement to an Extreme Angle

As described above, for some sites in cortex, stimula-
tion can result in movement of a joint to a goal angle.
For other sites, however, stimulation results in move-
ment of a joint in one direction only. If such a site in
cortex is stimulated for a long enough duration, the

. joint reaches an extreme position. This type of site was

classically described with respect to the control of the
fingers (Asanuma 1975). This pattern of results was
interpreted as evidence of a relatively direct, fixed con-
nection between the stimulated point in cortex and a
single muscle, either a flexor or an extensor. How-
ever, even in this case, the mapping between cortex
and muscle may not be simple or fixed and may be
modulated by proprioceptive feedback.

Figure 1C shows an example of a site in cortex that
when stimulated always drove the elbow toward flex-
ion (Graziano et al. 2004). The evoked muscle activity
was nonetheless modulated by joint angle. In this case,
the strength of the cortico-biceps pathway was great-
est when the elbow was fully extended and least when
the elbow was fully flexed. The discrepancy between
biceps and triceps activity was also greatest the elbow
was extended and least when the elbow was flexed.

The practical effect of this modulation is that ac-
tivity at this site should initiate a regulated movement
of the elbow toward flexion, in which the amount of
muscle activity depends on how far the elbow must be
moved to reach full flexion. In this interpretation, the
output neurons at the stimulated point in cortex did
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not encode a fixed pattern of muscle activity. Instead,
they encoded a regulated movement toward flexion in
which different patterns of muscle activity might be
required under different circumstances. At other stim-
ulation sites, for which stimulation resulted in an ex-
tension of the elbow, a corresponding result was ob-
tained with respect to the triceps.

Feedback Remapping and the Coding
of Movement Direction

In principle, the same mechanism of feedback remap-
ping outlined above could allow proprioceptive feed-
back from one joint to modulate the connections be-
tween cortex and the muscles that cross a different
joint. In this way, the movement or position of one
joint could interact with the cortical control of an-
other joint. One example of this type of feedback
remapping was provided by Kakei et al. (1999). They
recorded from neurons in the motor cortex of mon-
keys petforming a wrist movement task. For some
neurons, the orientation of the forearm remapped the
relationship between neuronal activity and the mus-
cles that actuate the wrist. For example, for one type of
neuron, if the forearm was supinated (palm up), activ-
ity of the neuron was correlated with, and presumably

helped to drive, the muscles that flex the wrist, result-

ing in the hand rotating upward. If the forearm was
pronated (palm down), activity of the neuron was cor-
related with the muscles that extend the wrist, again
resulting in the hand rotating upward. In this exam-
ple, asingle neuron in cortex encoded “upward” move-
ment of the wrist regardless of the orientation of the
limb. The underlying computation is the same as in
the example in Figure 1B. In both cases, a point in
cortex was connected primarily to the flexors or to the
extensors depending on feedback about the angle of
a joint. In the example from Kakei et al., the remap-
ping resulted in a code for direction of movement in
extrinsic space.

Feedback remapping could in principle be used to
construct other complex codes for movement as well.
For example, dynamic stretch receptors in the mus-
cles detect the speed of joint rotation, and therefore
could modulate the mapping from cortex to muscles
on the basis of velocity, resulting in 2 movement code
in which neurons in cortex help to specify the veloc-
ity of the movement (e.g. Reina et al. 2001). Feed-
back remapping could also result in combinations of
different types of coding, in which aspects of posture,
direction, and speed are all controlled to some degree
to result in a complex action. Such actions that appear
to combine the control of many different parameters

are reminiscent of the movements evoked by electri-
cal stimulation of motor cortex, such as bringing the
hand to the mouth in an apparently speed-controlled
manner (Graziano et al. 2002a,b).

Summary

A traditional debate in motor physiology is whether
motor cortex controls behavior at the level of move-
ments or of muscles (Taylor & Gross 2003). Neu-
rons in motor cortex become active in correlation
with many movement parameters such as direction
of movement of the hand through space, velocity,
force, joint angle, and arm posture (e.g. Caminiti
et al. 1990; Evarts 1968; Georgopoulos et al. 1986;
Georgopoulos et al. 1989; Kakei et al. 1999; Kalaska
et al. 1989; Reina et al. 2001; Scott& Kalaska 1995;
Scott & Kalaska 1997; Sergio & Kalaska 2003). Elec-
trical stimulation of motor cortex on a behavioral
time scale results in complex, multijoint movements
that appear to match the monkey’s normal behavioral
repertoire (Cooke & Graziano 2004; Graziano et al.
2002a,b; Graziano et al. 2004). Even purely spatial
information separated from any overt movement can
influence neurons in motor cortex (Crowe et al. 2004).
It is therefore clear that motor cortex is not simply a

 topographic map of muscles. Yet it does have a rela-

tively direct, descending pathway to the muscles, and
neurons in motor cortex are highly correlated with
muscle output (Cheney et al. 1985; Evarts 1968; He
et al. 1993; Holdefer & Miller 2002; Lemon et al.
1986). Perhaps the relevant question is not whether
motor cortex controls muscles or movements, since it
clearly does both. Rather, the relevant question may
be: what are the variables that intervene between mo-
tor cortex and muscles? _

Here we emphasize that proprioceptive feedback
from the limb is an important class of variables that
intervenes between motor cortex and muscles. In this
view, motor cortex is mapped to muscles, and this
mapping can be changed on a moment-by-moment
basis as a result of feedback from joint angle and mus-
cle stretch. We propose that this feedback remapping
provides tremendous processing power and can un-
detlie the cortical control of both simple and complex
motor variables, such as when activity in cortex speci-
fies a flexion or extension of a joint, a goal angle for a
joint, a movement in a particular direction in space, or
a movement of a particular peak speed. We suggest that
feedback remapping may be an overarching method of
motor control that can be used to construct many dif-
ferent, specific motor coding schemes. These specific
motor coding schemes might depend on the subre-
gion of motor cortex under study, the body part being
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controlled, the task being performed by the animal,
or the training history of the animal.
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