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Relationship between Unconstrained Arm Movements and
Single-Neuron Firing in the Macaque Motor Cortex
Tyson N. Aflalo and Michael S. A. Graziano
Department of Psychology, Princeton University, Princeton, New Jersey 08544-1010

The activity of single neurons in the monkey motor cortex was studied during semi-naturalistic, unstructured arm movements made
spontaneously by the monkey and measured with a high resolution three-dimensional tracking system. We asked how much of the total
neuronal variance could be explained by various models of neuronal tuning to movement. On average, tuning to the speed of the hand
accounted for 1% of the total variance in neuronal activity, tuning to the direction of the hand in space accounted for 8%, a more complex
model of direction tuning, in which the preferred direction of the neuron rotated with the starting position of the arm, accounted for 13%,
tuning to the final position of the hand in Cartesian space accounted for 22%, and tuning to the final multijoint posture of the arm
accounted for 36%. One interpretation is that motor cortex neurons are significantly tuned to many control parameters important in the
animal’s repertoire, but that different control parameters are represented in different proportion, perhaps reflecting their prominence in
everyday action. The final posture of a movement is an especially prominent control parameter although not the only one. A common
mode of action of the monkey arm is to maintain a relatively stable overall posture while making local adjustments in direction during
performance of a task. One speculation is that neurons in motor cortex reflect this pattern in which direction tuning predominates in local
regions of space and postural tuning predominates over the larger workspace.
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Introduction
Neurons in the motor cortex of the monkey brain are active
during arm movements. This activity is correlated with a range of
movement parameters, including force, muscle activity, the di-
rection, speed, and position of the hand, joint rotation, the mul-
tijoint posture of the arm, and other aspects of movement
(Evarts, 1968; Georgopoulos et al., 1982, 1984, 1986, 1992;
Cheney et al., 1985; Kettner et al., 1988; Caminiti et al., 1990;
Hocherman and Wise, 1991; Fu et al., 1993; Ashe and Georgo-
poulos, 1994; Scott and Kalaska 1995, 1997; Kakei et al., 1999;
Moran and Schwartz, 1999; Reina et al., 2001; Holdefer and
Miller, 2002; Sergio and Kalaska, 2003). One possibility is that the
search for the “correct” motor parameter is an ill-posed experi-
mental question because many different movement parameters
are correlated with motor cortex neurons. Recently, it has been
suggested that the motor system uses an “optimal control”
method, potentially controlling any parameter, whether spatial,
joint based, or muscle based, if it is useful for the performance of
the current task (Todorov and Jordon, 2002).

One limitation in previous studies is a tendency to use highly
constrained movement sets and animals that are extensively
trained. We recorded from neurons in the motor cortex of un-
trained monkeys. The arm was free to move spontaneously and
naturalistically while the movements were measured. One goal of

this study was to compare the results of a naturalistic, untrained
movement set with the previous results obtained with structured,
trained movement sets. Can the previous findings be replicated in
the present movement set, or will removing the behavioral con-
trol also remove the previously obtained neuronal tuning curves?

A second goal of this study was to assess the proportion of total
neuronal variance attributable to different movement parame-
ters. In most previous experiments, the constrained movement
sets were designed to focus on one or a small number of move-
ment parameters. Once all other sources of variance have been
removed, minimized, or averaged out of the data, then the par-
ticular parameter under study may account for most of the re-
maining neuronal variance, with an R 2 value that may be as high
as 0.9. Such studies, although legitimately addressing a variety of
questions, do not address a certain fundamental question. If most
sources of neuronal variance are left in the data by using a more
natural range of movement, then what proportion of the total
neuronal variance can be explained by any single parameter? Are
neurons primarily tuned to one parameter, with the majority of
their total variance explained by that parameter, or instead are
neurons partially tuned to a diversity of parameters, with each
parameter capturing a small portion of the total variance?

Of the 25 analyses included here, five overlap with a prelimi-
nary report (Aflalo and Graziano, 2006). These five analyses were
updated and included in the present report because they provide
the necessary context for the full set of analyses.

Materials and Methods
All procedures were approved by the Princeton University Institutional
Animal Care and Use Committee and the attendant veterinarian and
were in accordance with National Institutes of Health and United States
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Department of Agriculture guidelines. We studied the motor cortex in
the left hemispheres of two adult male Macaca fascicularis.

Surgery. For each monkey, an initial surgical operation was performed
under isoflurane anesthesia and strict aseptic conditions, during which
an acrylic skullcap was fixed to the skull with bone screws. A steel bolt for
holding the head and a 2.5 cm diameter steel chamber for neuronal
recording were also imbedded in the acrylic. The recording chamber was
positioned for a vertical (dorsoventral) approach to the precentral gyrus.
Each animal recovered from the surgery within 1 week but was given 2
additional weeks to allow the skull to grow tightly around the skull
screws. In a subsequent procedure, also under deep anesthesia and asep-
tic conditions, the recording chamber was opened and a hole �10 mm in
diameter was drilled through the layer of acrylic and the bone, exposing
the dura.

Neuronal recording. During the daily recording sessions, the monkey
sat in a Lexan primate chair with the head restrained by the head bolt. A
hydraulic microdrive (Narishige, Tokyo, Japan) was mounted to the top
of the recording chamber. A steel guide tube (a 22 gauge syringe needle)
was lowered through the hole in the skull and into the granulation tissue
that lay over the dura. Then the varnish-coated tungsten microelectrode
(impedance of 0.5–2 M�; Frederick Haer Company, Bowdoinham, ME)
was advanced from the guide tube through the dura and into the brain.
Neural signals were amplified (model 1800 amplifier; A-M Systems,
Carlsborg, WA), filtered (300 –5000 Hz), and recorded at 25,000 Hz. An
off-line spike-sorting algorithm was used to assign spikes to individual
neurons. Typically one to three neurons could be reliably isolated on the
electrode at one time.

Single-neuron activity was sampled at various depths within the motor
cortex ranging from the first depth at which any neurons could be iso-
lated to the depth at which the neurons disappeared and the white matter
was presumed to begin. A systematic test of different layers of cortex was
not attempted in the present experiment. We saw no clear distinction in
the tuning properties reported here for shallow or deeper recordings
within motor cortex and therefore included all neurons into one analysis
population. Neurons were not preselected in any way based on response
properties. Instead, all neurons that were encountered by the electrode
and that could be held long enough for collection of a full dataset were
included.

Location of recording sites. Neither monkey was killed at the termina-
tion of this experiment. For monkey 1, after the experiment, the implant
was removed and the brain was scanned in a 3-T Siemens (Munich,
Germany) Allegra magnetic resonance imaging (MRI) head scanner us-
ing a 16 cm birdcage coil (NMSC-023; Nova Medical, Wakefield, MA). A
high-resolution, 0.5 � 0.5 � 0.5 mm anatomical scan of the whole brain
was taken (magnetization-prepared rapid-acquisition gradient echo se-
quence; field of view, 128 � 128 mm; matrix, 256 � 256; repetition time,
2500 ms; echo time, 4.4 ms; flip angle, 8°). Figure 1 A shows a surface
reconstruction of the cortex with the studied area in brightened shading.
Figure 1 B shows a sagittal section through the motor cortex with the
studied area again in brightened shading.

To find the motor cortex before recording, the central and arcuate
sulci were located by shining a bright light on the dura during the initial
craniotomy surgery. Both sulci were clearly visible through the dura. The
microdrive was then mounted to the recording chamber, and the loca-

tions of the visualized sulci were measured with the tip of the guide tube.
In this way, the locations of the sulci were obtained in microdrive
coordinates.

After the craniotomy surgery, during the daily experiments, the mea-
sured location of the central sulcus was confirmed to within 0.5 mm by
recording and stimulating to either side of the sulcus. Just posterior to the
sulcus, in primary somatosensory cortex, we observed the expected small
tactile receptive fields on the contralateral limb and also the expected
rarity of effect of intracortical electrical microstimulation even with cur-
rents as high as 200 �A (negative leading biphasic pulses, 0.2 ms phase
width, 200 Hz, 100 –500 ms train durations, 5–200 �A current). Just
anterior to the sulcus, we obtained neuronal responses during hand and
arm movement and low microstimulation thresholds, typically �20 �A,
sometimes as low as 5 �A, as expected from primary motor cortex. The
location of the arcuate sulcus was confirmed by microstimulating just
anterior to it and obtaining no skeletomotor movements, but instead
obtaining stimulation-evoked saccadic eye movements presumably in
the frontal eye fields.

The sites tested were located in the arm representation in motor cortex
and were within the anterior bank of the central sulcus or on the cortical
surface within 2 mm of the central sulcus. They therefore lay within the
boundaries of traditional primary motor cortex. Additional information
on the location of sites within the functional map was provided by the
analyses of the joint angles to which the neurons were responsive, as
described below.

Measurement of joint angles. The positions of points on the limb con-
tralateral to the recording electrode were measured by means of an Op-
totrak 3020 system (Northern Digital, Waterloo, Ontario, Canada). This
system tracks the three-dimensional position of infrared light emitting
diodes (LEDs). Each LED could be separately tracked to a spatial resolu-
tion of 0.1 mm. The position was measured every 14.3 ms. To create a
marker that could be detected by the Optotrak cameras from any angle,
we glued five individual LEDs together to produce an omni-directional
marker ball. A marker ball was taped to the monkey’s forefinger on the
dorsal surface so it would not interfere with grasping, on the thumb,
again on the dorsal surface so it would not interfere with grasping, on the
back of the hand between the knuckles of the third and fourth digits, on
the lateral aspect of the elbow, and on the shoulder. In addition, 14
individual markers were taped in a double ring around the monkey’s
wrist, with seven markers per ring and a 1 cm spacing between the rings.
A marker was taped to the side of the primate chair to calibrate the
position of the monkey with respect to the chair. For the LEDs attached to
the arm and hand, the wires were taped in a bundle to the underside of the
arm and draped behind the monkey. The primate chair was open at the
front and side, allowing for almost total range of movement of the arm.
The monkey’s other arm, ipsilateral to the electrode, was not studied with
Optotrak markers. To ensure that this hand did not reach for the fruit
rewards during trials or tear off the markers taped to the measured hand,
the untested hand was fixed to the side of the chair in an arm holder.

The double ring of 14 markers around the wrist was subjected to a rigid
body computation to calculate the location and spatial orientation of the
wrist. In this computation, for each time point, a three-dimensional rigid
model of the double ring of markers was fitted to the measured positions
of the currently visible markers, using a least-squares method of optimal
fit. The orientation and position of the model could then be used to
estimate the orientation and center of the wrist. The center of the wrist
was taken to be the mean position of the 14 points in the model.

The position of the shoulder in space was calculated by analyzing the
position of the elbow over time. Over many time points, the elbow de-
scribed a portion of a sphere, the origin of which was located at the
shoulder joint. For each 3 min block of data, a shoulder position was
calculated by fitting a sphere to the data using a least-squares best-fit
algorithm and using the center of the sphere as the shoulder location.
Because the shoulder is capable of small translational movements in
addition to rotations, this method of estimating shoulder joint location is
approximate but was sufficient for the purposes of this study. When the
shoulder position was calculated multiple times over different time seg-
ments, it varied within �3 cm.

Three shoulder angles were computed: the elevation, the azimuth, and

Figure 1. Images of the brain of monkey 1 showing the studied area of cortex. A, MRI
reconstruction of the cortical surface showing sulcal pattern. Studied region is in lightened
shading. The white line indicates the section shown in B. B, Parasagittal section (0.5 mm thick)
through the studied area of cortex. Studied region is in lightened shading.
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the “twist” or internal/external rotation of the
shoulder joint. We also calculated the flexion of
the elbow, the pronation of the forearm, the
extension of the wrist, the adduction of the
wrist, and the grip aperture. In total, eight de-
grees of freedom were calculated for the arm.
This model of the arm was verified by applying
forward kinematics to estimate the position of
the hand. This calculated position of the hand
matched the actual, measured position of the
hand within 1.5 cm.

Description of movements in the dataset. Dur-
ing testing of a neuron, the monkey was allowed
to move its contralateral arm freely to touch
and explore parts of the primate chair, to reach
for small pieces of fruit held out on the end of
forceps, to bring food to its mouth, to retrieve
food from its mouth, to hold and examine food
in central space, and to rotate and explore food
items. Occasionally, the monkey also scratched
at its skin, scratched rhythmically at a portion of
the monkey chair, or attempted to scratch the
experimenter with a fast semi-ballistic arm
movement. The movement of the arm was re-
corded through all of these behaviors. Different
types of behaviors were not separated in the
analysis, partly because one type of behavior
tended to grade into another type and the dis-
tinction between behaviors could only be made
subjectively and partly because the purpose of
the study was to include all arm movements in
as large and naturalistic a range as possible
given the constraints of the primate chair.

For each neuron, the position of the hand in three-dimensional space
was measured every 14.3 ms during a continuous time interval ranging
from 10 to 30 min. The hand position data were smoothed using a cubic
spline with a smoothing coefficient of 0.05. The instantaneous hand
speed was then calculated using a three-point running average to obtain
a smoothed speed profile. Separate movements were extracted from the
dataset on the basis of a speed analysis. Minima in the speed were iden-
tified and the intervals between minima were flagged as potential sepa-
rate movements. To enter the final dataset, the movement had to be at
least 150 ms in duration and the peak speed had to be at least 20 cm/s.
These parameters seemed to successfully divide the data into discrete
segments that matched our subjective impression of separate hand
movements. The average speed profile is further described in Results (see
Speed tuning I).

The various analyses in this report focus on the neuronal activity as-
sociated with periods of arm movement as defined by the velocity anal-
ysis described above. We originally attempted to analyze both the periods
of movement and the interleaved periods of non-movement but found
that neurons were frequently inactive during periods of hand stasis be-
tween movements. This lack of activity may be related to the spontaneous
nature of the movements. There may have been little planning between
movements. Sometimes the arm was relaxed or braced against a part of
the chair between movements, and this state of relaxed stasis could not be
distinguished from more active stasis in the recorded data. Often the
animal performed a mouth movement or a foot movement between arm
movements, perhaps drawing attention and motor planning to a differ-
ent body part. These reasons may have contributed to a reduction in and
a variability of neuronal activity between movements. The analyses re-
ported here are therefore focused on the periods of arm movement.

Figure 2 A shows a typical movement set collected during the testing of
a neuron. This set shows 514 separated movement segments that densely
sampled the workspace of the hand. Vertically, the movements ranged
from 29.7 cm below the mouth to 7.8 cm above the mouth. Horizontally,
the movements ranged from 19.4 cm on the contralateral side (same side
as the studied arm, opposite side to the electrode) to 16.6 cm on the
ipsilateral side. In depth (direction along the monkey’s forward line of

sight), the movements ranged from 7.5 cm behind the level of the mouth
(such as when the monkey reached to its flank or to its ear) to 20.2 cm in
front of the mouth (normal for a fully extended reach). The range of
movement starting points was not significantly different from the range
of ending points.

The average � SD length of a movement was 8.0 � 4.9 cm. The
average � SD duration was 351 � 133 ms. The average � SD hand
speed was 23.74 � 9.9 cm/s. Each movement had a peak speed, and
the average � SD peak speed among all movements was 40.7 � 20.4
cm/s. The average time between movements was 4.06 s. This pause
between movements ranged from �1 s (40% of pauses, representing
brief periods of stasis during ongoing arm movement) to longer than
10 s (15% of pauses, representing periods when the monkey had
stopped making arm actions and was stationary or engaged in move-
ment of other body parts).

For each movement, we calculated a standard curvature metric as
follows. The straight-line distance between the start and end of the move-
ment was found. The total path length of the movement was found. The
ratio of these two quantities provided a curvature metric in which 1.0
corresponds to no curvature and smaller numbers correspond to increas-
ingly curved movements. The average � SD curvature was 0.91 � 0.09,
indicating that the movements tended to be straight. In Figure 2 A, some
movements appear to be highly curved. This appearance is a result of
collapsing a three-dimensional movement into a two-dimensional de-
piction in which the long axis of the movement is not fully shown.

For each movement, we calculated a direction by connecting the start
point to the end point and obtaining the azimuth and elevation angles.
The distribution of these directions was then examined. The directions
appeared to be relatively evenly distributed. The sphere of all possible
directions was divided into 20 equal sectors, and the movement direc-
tions were distributed over these 20 sectors with all sectors represented.
Thus, the unstructured movement set was well behaved, followed ex-
pected characteristics of normal movement, and included a diverse range
in terms of workspace, length, speed, and direction.

Inevitably, the movement set included some non-uniformities in the
distribution of hand positions and joint angles. For example, hand posi-

Figure 2. Range of movements in the naturalistic movement set. A, Front view of 514 hand movements made during 10 min
of testing one neuron. Each trail of dots is equivalent to one movement measured at 14.3 ms intervals. Frame is 45 cm tall. B,
Correlations among the final positions of the eight degrees of freedom among the recorded movements. Degrees of freedom are
as follows: 1, shoulder azimuth; 2, shoulder elevation; 3, shoulder internal/external rotation; 4, elbow extension; 5, forearm
pronation; 6, wrist extension; 7, wrist adduction; 8, grip aperture. Units on x- and y-axes of each plot are degrees of joint angle,
except for degree of freedom 8, which is expressed in centimeters.
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tions near the face were overrepresented. Hand positions in lower space
were less well represented. Because the movement sets were spontaneous,
we were not able to enforce an even distribution of all types of movement.
As a result, there is some concern whether the dataset is diverse enough,
and the movement parameters independent enough, to allow for mean-
ingful regression analyses. One approach to this issue is addressed in
Results (see Simulated neurons). We simulated noisy neurons that were
tuned in a variety of ways, calculated the expected response of these
neurons during the actual recorded movement sets, and then applied the
regression models to the results. We found that the movement sets were
sufficiently diverse to allow the regression analyses to uncover the correct
tuning curves.

Non-uniformities in the movement set present a particular prob-
lem for separating the effect of direction tuning from the effect of
hand-position tuning. For example, if a neuron is tuned to upward
motion of the hand, it may appear to prefer an upper hand location
simply because that location in space can only be reached by upward
motion. This possible confound was addressed partly through the use
of the simulated neurons (simulated direction-tuned neurons did not
evidence a high degree of tuning to hand position) and partly by
means of the analysis of neuronal data in Results, showing that the
preferred direction does not easily account for the hand-position
tuning (see End-point tuning).

Non-uniformities in the movement set may also result in correla-
tions among the different joints of the arm. Such interjoint correla-
tions would be problematical particularly in the analysis for neuronal
tuning to final posture. A neuron may actually be related to one joint
but, because of interjoint correlations, appear to be related to other
joints as well. It was therefore important that the movement set con-
tain enough independence among joints that the contributions of
each joint could be separated through regression analysis. Figure 2 B
shows the correlations among the joint angles reached at the end of
the movements. The joints were not tightly coupled. Some showed
correlations with each other, as expected given the known covariance
of joints during movement, but the scatter was easily sufficient to
allow a regression analysis to separate the different contributions.
This lack of any strong coupling among joints was probably caused by
the great diversity of movements in the set and is presumably the
reason for the success of the simulated neuron analysis in which
simulated tuning functions could be successfully recovered using our
regression analyses. This issue is further addressed in Results.

Preliminary analysis to specify somatotopic location. To further con-
firm the somatotopic portion of motor cortex that was studied, we
performed a preliminary analysis on each neuron. Using a stepwise
regression, we obtained the degree of correlation between the neuro-
nal activity and the velocity of each of the eight measured joints. If we
were recording primarily in a distal representation, we would expect
to find significant regressions with distal joints including hand aper-
ture, wrist flexion, wrist adduction, and forearm pronation. If we
were recording primarily in a proximal representation, we would
expect to find significant regressions with proximal joints, including
elbow flexion and the three degrees of shoulder rotation. Given the
known overlap in motor cortex somatotopy, we expected to find
neurons related to both proximal and distal joints. The results indi-
cated that 89% of the neurons were significantly related to the prox-
imal joints and 67% were significantly related to the distal joints.
These results indicate that the studied neurons were in the forelimb
representation in a region that emphasized the proximal joints over
the distal joints but represented both.

Regression models. Each neuron was tested for a range of possible tun-
ing functions. Each model of a tuning function was compared with the
behavior of the neuron by means of a regression analysis. Some models,
such as tuning to speed, involved one free parameter. Other models, such
as tuning to posture, involved several free parameters. To avoid inflating
the R 2 value with the addition of more parameters, we used the standard
adjusted R 2 metric that takes into account the number of regressors

(Cohen et al., 2003). Also following standard practice, we performed a
regression only if the number of data points was 20 or more times the
number of regressors, thus minimizing the risk of overfitting the data.
Finally, as a validity check, we performed an analysis on simulated neu-
rons (see Results, Simulated neurons). For example, we tested a simu-
lated neuron that was direction tuned. When tested on an actual, re-
corded movement set and with our regression models, the neuron
yielded a high R 2 value for direction tuning. It yielded a low R 2 value for
postural tuning, despite the larger number of regressors in the postural
analysis. Likewise, a simulated neuron with no tuning signal yielded a low
R 2 value on all regression models regardless of the number of regressors
in the models.

For all regression models described below, we followed a standard
procedure in which we offset the movement data from the neuronal spike
data by a latency. In this procedure, the kinematic data were taken from
the movement period defined by the velocity analysis and the neuronal
spike data were taken from an equivalent time period offset by a latency.
We tested latencies between �286 and 286 ms at 14.3 ms increments (the
temporal resolution of the movement data) and used the result of the
regression analysis to choose the latency that optimized the R 2 between
neuronal activity and movement. The reason for this approach is that, in
general, a latency will exist between the activity of a cortical neuron and
the movement of the arm, and different neurons may have different
latencies. This analysis differs from the analysis we described previously
(Aflalo and Graziano, 2006) in which we used a fixed latency based on the
results of electrical stimulation of each site in cortex. In the present paper,
because of the optimization of latency, the regression analyses resulted in
slightly higher R 2 values than in our previous publication.

In most analyses, the neuronal firing rate was averaged over the dura-
tion of each movement, and therefore no additional smoothing of the
neuronal data was required. However, for the analyses of hand speed, the
instantaneous neuronal firing rate was required. For these analyses, we
smoothed the firing rate data using a 10 Hz upper cutoff. The reason for
using this frequency cutoff was to ensure that our results were directly
comparable with previous studies that used a similar technique (Moran
and Schwartz, 1999).

The four main regression models used in this paper are described
below, and other models are described in the relevant subsections of
Results.

Direction tuning. Each neuron was tested for direction tuning in the
following manner. For each movement, we calculated a mean firing rate
of the neuron (spikes per second during the movement, offset by a la-
tency as described above). Each hand movement was assigned a direction
in Cartesian space based on the vector connecting the beginning and end
point of the movement. Firing rate was modeled as a function of the
angular deviation (��) between this movement vector and a preferred
direction: firing rate � A cos (��) 	 B. A regression analysis was used to
find the optimal preferred direction and coefficients, following the
method of Georgopoulos et al. (1986). The regression analysis provided
an R 2 value indicating how much of the variance in neuronal activity
could be attributed to the direction-tuning model.

Direction tuning that rotates with the start position of the hand. Each
neuron was also tested with a second direction-tuning model. In this
model, the preferred direction vector (PD) was obtained using a cosine
tuning model of neuronal firing rate, as above. However, PD was not
assumed to be fixed in all regions of the workspace. Instead, it was as-
sumed to vary depending on the start position of the arm. The start vector
(ST) was defined as the vector pointing from the shoulder to the position
of the hand at the start of the movement. The direction of ST was de-
scribed by two parameters: the start azimuth � and the start elevation �.
PD was assumed to vary linearly with ST. In this model, the azimuth of
PD was linearly related to the azimuth of ST with a slope defined by the
parameter AZ, and the elevation of PD was linearly related to the eleva-
tion of ST with a slope defined by the parameter EL. Thus, if both AZ and
EL are 0, then PD is indeed independent of ST and always points in the
same direction regardless of starting position. If AZ and EL are both 1,
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then PD rotates exactly in tandem with ST, remaining at afixed spatial
relationship with respect to the arm. In this model, the equation for PD as
a function of AZ, �, EL, and �, is as follows:

PD � �cos(AZ�)cos(EL�)) sin(AZ�) cos(AZ�)sin(EL�)
sin(AZ�)cos(EL�) �cos(AZ�) sin(AZ�)sin(EL�)

sin(EL�) 0 cos(EL�)
� �PDx

0

PDy
0

PDz
0
� ,

where PD 0 indicates the preferred direction when the hand is located at
� � 0 and � � 0.

End-point tuning. For this model of neuronal tuning, all data concern-
ing the direction or trajectory of the movement was discarded and only
the end point of the movement was considered. Firing rate was modeled
as a Gaussian function of these end points in Cartesian space. In the
following equation, x1, x2, and x3 refer to the three Cartesian coordinates
of the end point of the movement, P1, P2, and P3 refer to the coordinates
of the peak of the Gaussian, the SDs of the Gaussian around that peak are
indicated by �1, �2, and �3, the height of the Gaussian is given by A, and
the floor of the Gaussian is B. A nonlinear regression technique (Bates
and Watts, 1988) was used to fit this equation to the data for each neuron:

Firing rate � Ae

 x1�P1�2

2�12 	

 x2�P2�2

2�22 	

 x3�P3�2

2�32
� B.

End-posture tuning. This model followed the same general equation as
the end-point model except that it involved the eight dimensions of
arm-posture space (x1 through x8) rather than the three dimensions of
Cartesian space. Firing rate was modeled as a Gaussian function that had
a peak at a specific, preferred posture. Again, a nonlinear regression
technique was used to fit the model to the data for each neuron:

Firing rate � Ae
�
i�1:8


 xi�Pi�2

2�i2

� B.

Results
Speed tuning I
We first tested whether previous standard methods of obtaining
speed tuning from motor cortex neurons would also reveal speed
tuning in the present, unconstrained movement set. In the first
test of speed tuning, we used a procedure based partly on that of
Moran and Schwartz (1999). In this method, for each neuron,
many movements are averaged together to produce a mean speed
profile and a mean firing-rate profile. The two profiles are then
compared with each other using a regression analysis to deter-
mine whether the average hand speed tends to track the average
firing rate throughout the movement.

Figure 3 shows the results for one example neuron. The data
on the changing position of the hand through time was seg-
mented into separate movements (for details, see Materials and
Methods). Because of the unconstrained nature of the animal’s
behavior, different movements were of different durations. To
average across movements, we first normalized the length of
movements by dividing each movement into 20 time bins. For
each time bin, the instantaneous firing rate and the hand speed
were calculated. These numbers were then averaged across the
321 movements tested for this neuron. The thin line in Figure 3A
shows the average hand speed rising and falling during the move-
ment in a smooth, bell-shaped velocity profile typical of normal
movement. The thick line shows the average neuronal activity,
also rising and falling during movement.

We performed a regression analysis to compare the average
hand speed with the average firing rate. Following a standard
method, we used a fixed time window of kinematic data that
corresponded to the hand movement and used a time window of
equal duration but adjustable start time for the neuronal data.
The temporal offset between the neuronal and kinematic data
were then optimized to yield the maximum R 2 value. A similar

offset optimization was used for all analyses (see Materials and
Methods). For this neuron, the regression analysis returned the
largest R 2 value at a temporal offset of �71 ms with neuronal
activity preceding movement. The R 2 value for this example neu-
ron was 0.87, and the regression was highly significant ( p � 3.5 �
10�9).

Figure 3B shows a histogram of R 2 values for all 64 cells tested
in this manner. The mean R 2 value was 0.71, and 93% of the
neurons had a statistically significant regression against speed
(0.05 significance level, corrected for the number of neurons us-
ing the Bonferroni method). These findings approximately
match the findings of Moran and Schwartz (1999) who also re-
ported a high degree of speed tuning. The results indicate that the
same type of neuronal tuning to speed found in previous exper-
iments can be obtained in a freely moving condition.

The above method of testing for speed tuning has a limitation.
The method involves averaging across many movements to ob-
tain relatively smooth, well behaved curves from which the
between-movement variance has been removed. If the averaging
is not performed and therefore the full range of neuronal variance
is left in the analysis, what percentage of the total variance will be
attributable to speed tuning? This question is addressed in the
next section.

Speed tuning II
To examine speed tuning in the raw data without using averaging
to remove variance, we used a technique based partly on that of
Ashe and Georgopoulos (1994). Figure 3C shows the result for
one example neuron. For this neuron, 339 movements were stud-
ied. These movements, placed end to end with periods of non-
movement removed, spanned 129 s. During this span of time, did
the instantaneous firing rate of the neuron correlate with the
instantaneous hand speed? We treated each 14.3 ms time bin
within each movement as a distinct data point in the regression.
For this neuron, 9018 time bins were used. The regression be-
tween neuronal activity and hand speed (offset by an optimized

Figure 3. Speed tuning of motor cortex neurons. A, Firing rate and hand speed averaged
over 321 movements for one example neuron. When neuronal data were shifted forward by 71
ms (the optimal time lag for this neuron), the two curves matched closely with an R 2 of 0.87. B,
Frequency histogram of R 2 values for all 64 neurons tested as in A. C, Firing rate versus hand
speed for 9018 time bins during hand movement studied for one example neuron. The two
variables showed a small but highly significant correlation (R 2 � 0.03; p � 1.5 � 10 �17). D,
Frequency histogram of R 2 values for all 64 neurons tested as in C.
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latency; see Materials and Methods) was highly significant ( p �
1.5 � 10�17), yet the R 2 value was 0.03. Of the variance in neu-
ronal activity during hand movement, only 3% could be attrib-
uted to speed tuning.

Figure 3D shows the R 2 values for all 64 cells tested. The mean
R 2 was 0.01, and 98% of the neurons had a statistically significant
regression (0.05 significance level, corrected for the number of
neurons using the Bonferroni method). These results show that
almost all neurons are tuned to hand speed and that this tuning
accounts for a small proportion of the total neuronal variance.

Many different analytic methods can be used to test for speed
tuning. We tested two additional regression analyses with similar
results. We compared the peak speed of each movement (hand
speed during the 14.3 ms time bin around the peak speed) with
the firing rate associated with that peak speed (during the 14.3 ms
time bin offset from the peak speed by a latency optimized for
each neuron). This regression returned a mean R 2 value of 0.03.
We also compared the mean speed during each movement with
the mean firing rate associated with the movement (during a time
window of the same duration as the movement and offset by a
latency optimized for each neuron). This regression returned
a mean R 2 value of 0.02. All of these methods converged on a
similar result: the neuronal firing rate varies from movement to
movement, and 1–3% of this variance is attributable to speed
tuning. Only when the between-movement variance is removed
by averaging (as above, Speed tuning I) will the remaining vari-
ance be well correlated with hand speed. These results do not
show that neurons have no real speed tuning. Rather, they are
genuinely speed tuned, accounting for a small proportion of the
total neuronal variance. Previous studies report that motor cor-
tex neurons are tuned to both speed and direction. Can a large

proportion of the remaining variance be
attributed to direction tuning? The follow-
ing sections examine tuning to direction
and also to velocity.

Direction tuning I: local
Figure 4A shows 26 movements selected
from the 320 spontaneous movements
performed by the monkey during the test-
ing of one example neuron. These 26
movements were selected from the full set
of movements on the basis of start location
(within a central ball of space with radius 5
cm) and length (between 6 and 15 cm).
These movements therefore roughly ap-
proximated the center-out movement set
commonly used to test direction tuning in
motor cortex neurons (Georgopoulos et
al., 1986). For each of these movements,
we defined the direction to be the vector
pointing from the start location to the end
location of the movement. Also for each
movement, a mean neuronal firing rate
was calculated. The mean firing rate was
based on a time interval equal to the move-
ment interval but offset from the move-
ment interval by an optimized temporal
lag (see Materials and Methods). We per-
formed a regression analysis to determine
the preferred direction of the neuron. We
used a standard cosine tuning model
(Georgopoulos et al., 1986) in which the

firing rate of the neuron is proportional to the cosine of ��, the
angle between the preferred direction and the actual direction of
movement.

Figure 4B shows the result of this analysis for an example
neuron. On average, the firing rate was high during movements
near the preferred direction (thus with low ��) and low during
movements far from the preferred direction (with high ��). The
regression fitting to the cosine model returned an R 2 value of 0.43
and was highly significant ( p � 0.0001).

Figure 4C shows the R 2 values for all cells tested. The mean R 2

value was 0.42, and 68% of the cells showed a significant fit to the
cosine model of directional tuning (0.05 significance level, cor-
rected for the number of neurons using the Bonferroni method).
The present results are therefore similar to previous results using
a center-out task, in that most neurons showed a significant fit to
a cosine tuning function.

Just as in the case for speed tuning, the R 2 values obtained for
the present analysis showing strong direction tuning must be
interpreted cautiously. The movement set is limited such that the
direction of movement represents a main source of variance and
thus results in a relatively high R 2. Other sources of variance,
including differing starting positions, starting postures, and
movement distances, although present in this selected dataset, are
minimized. If the entire range of movements were used and, thus,
all sources of variance were admitted to the data, how much of the
total variance would be attributable to direction tuning? This
question is addressed in the next section.

Direction tuning II: global
Figure 4D shows the full set of 320 movements performed by the
monkey during the testing of one example neuron. We per-

Figure 4. Direction tuning of motor cortex neurons. A, Front view of 26 selected hand movements made during 10 min of
testing one neuron. Each trail of dots is equivalent to one movement measured at 14.3 ms intervals. Frame is 45 cm tall. Each
movement shown originated within a 5 cm radius sphere of central space and was between 6 and 15 cm in length. B, Tuning of an
example neuron to direction, based on selected movement set. x-Axis shows angular difference between the direction of each
movement and the preferred direction; y-axis shows mean firing rate during each movement; for cosine tuning to direction, R 2 �
0.43, p � 0.0001. C, Frequency histogram of R 2 values for all neurons tested as in B. D, Front view of full set of 320 hand
movements made during testing of one neuron. E, Direction tuning of an example neuron (same neuron as in B), based on full
movement set. R 2 � 0.05, p � 0.00008. Note that a new preferred direction was obtained by regression, and therefore the data
points shown in B do not plot to the same location on the x-axis as in E. F, Frequency histogram of R 2 values for all neurons tested
as in E.
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formed a regression analysis to determine how well the neuronal
firing during the full range of movements fit a cosine model of
direction tuning. Figure 4E shows the result for the same example
neuron shown in Figure 4B. The regression fit to the cosine
model was highly significant ( p � 0.00008). The R 2 value for the
global movement set, however, was 0.05. Thus, direction tuning
accounted for only �5% of the total variance in the behavior of
this neuron. Figure 4F shows the R 2 values for all 64 cells tested.
The mean R 2 value was 0.08, and 63% of the cells showed a
significant fit to the cosine model of directional tuning (0.05
significance level, corrected for the number of neurons using the
Bonferroni method).

These results show that most neurons in motor cortex are
indeed direction tuned, but by itself direction tuning accounts for
only �8% of the global neuronal variance. Other parameters
must account for the remaining variance. Numerous studies have
shown that hand position and arm posture have a large effect on
the activity of motor cortex neurons (Kettner et al., 1988; Cam-
initi et al., 1990; Scott and Kalaska, 1995, 1997; Sergio and
Kalaska, 2003). These effects of posture may be even greater in the
present dataset because a greater range of postures was included.

Direction tuning III: rotation of preferred direction with
changes in starting hand position
The previous section examined whether each neuron was tuned
to a single preferred direction. One possibility, however, is that a
single preferred direction might not capture the full extent of
direction tuning for a typical neuron. Perhaps direction tuning
would capture a greater share of the total neuronal variance if we
used a more sophisticated tuning model in which the preferred
direction rotates systematically as the starting position of the
hand changes.

Caminiti et al. (1990) tested direction tuning in motor cortex
neurons when the hand was placed at three different starting
positions separated horizontally. Averaged across neurons, the
preferred direction rotated in the same direction that the starting
position of the arm rotated (for a similar finding of shoulder-
centered directional tuning, see Wu and Hatsopoulos, 2006). We
asked whether a similar result could be confirmed in the present
dataset and whether this model of a rotating preferred direction
could capture more of the total neuronal variance.

We analyzed each neuron as follows (for equations, see Mate-
rials and Methods). First, for each movement, we defined the
start vector to be the straight-line vector from the monkey’s
shoulder to the position of the hand at the start of the movement.
The direction of this start vector was defined by a specific start
azimuth angle and start elevation angle. We then fit the neuronal
data to a regression model that included a cosine tuning to a
preferred direction but in which the preferred direction rotated
in the azimuth in a manner linearly related to the start azimuth
angle of the arm and also rotated in elevation in a manner linearly
related to the start elevation angle of the arm. The ratio between
the rotation of the preferred vector of the neuron and the start
vector of the arm was parameterized by two numbers, AZ for the
azimuth ratio and EL for the elevation ratio. For example, if the
regression settled on an AZ � 0, this result would indicate that the
preferred direction for the neuron remained constant in different
regions of space and did not rotate in the azimuth regardless of
the start vector. If the regression returned an AZ � 0, this result
would indicate that the preferred direction of the neuron tended
to rotate in the same direction as the starting vector of the arm.
An AZ � 1 would indicate that the preferred vector rotated ex-
actly in tandem with the start vector of the arm. An AZ � 0 would

indicate that the preferred vector rotated in the opposite direc-
tion as the start vector of the arm. Given the noisy nature of
neuronal signals, a range of AZ values was expected, and a null
result would emerge as a distribution of AZ values centered
around 0. Similar relationships would pertain to the elevation of
the preferred vector and the elevation of the start vector, charac-
terized by the parameter EL.

Figure 5A shows the results of this regression for all neurons.
The black bars show the results for the azimuth. The AZ values
peaked near 1. The mean AZ value was 0.88, and the distribution
was significantly more than 0 (t � 3.87; p � 0.00039). This result
replicates the finding of Caminiti et al. (1990) in three ways. First,
the preferred direction rotated when the start position of the
hand was changed. Second, the extent and direction of rotation of
the preferred direction varied considerably from neuron to neu-
ron, as shown by the wide distribution of AZ values. Third, on
average across neurons, the preferred direction rotated in the
same direction and by approximately the same extent (approxi-
mately a ratio of 1) as the start vector. On this final point, our
results are even more clear than the results of Caminiti et al.,
possibly because Caminiti et al. used only three start positions of
the hand whereas we used a continuous range of start positions
over the entire workspace, improving our sampling.

The experiment of Caminiti et al. examined changes in start
position in the azimuth only. Here we were able to examine
changes in both azimuth and elevation, and the open bars in
Figure 5A show the result for elevation. The mean EL value was
0.54, and the distribution was significantly more than 0 (t � 2.28;
p � 0.029). This result indicates that the preferred direction
tended to rotate in elevation in the same direction that the start
vector rotated. However, the distribution was not as clearly
shifted toward 1 for elevation as it was for azimuth.

These results show that the preferred direction that best fits a
neuron, as extracted by regression analysis, tends to be one that
changes depending on the start position of the hand, rotating
approximately in tandem with the arm. This trend is more clear
and highly significant for rotations in the azimuth and is less clear
although still significant for elevation. Figure 5B shows the dis-
tribution of R 2 values obtained with this model of a rotating
preferred direction. The mean R 2 value is 0.13. This mean R 2

value is significantly greater than the mean R 2 of 0.08 obtained
with the previous, simpler model of a fixed preferred direction

Figure 5. Rotation of preferred direction with starting hand position. A, A preferred direc-
tion model was tested in which the preferred direction of a cell was not fixed but instead could
rotate as the start position of the hand rotated. Frequency histogram shows AZ and EL values for
all cells tested. The AZ rotation index indicates the ratio between the starting azimuth angle of
the arm and the azimuth angle of the preferred direction of the neuron. The peak in AZ near 1
indicates that the preferred direction of most neurons tended to rotate in the same direction and
by a similar amount as the starting angle of the arm. Similarly, the EL rotation index indicates
the ratio between the starting elevation angle of the arm and the elevation angle of the pre-
ferred direction of the neuron. B, Frequency histogram of R 2 values for all cells tested with this
model of a rotating preferred direction.
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and shown in Figure 4F (comparison of the two R 2 distributions,
t � 3.5; p � 0.00072).

Direction tuning IV: changes of preferred direction with
changes in initial posture
Scott and Kalaska (1995, 1997) showed that the preferred direc-
tion of a neuron tends to change when the initial posture of the
arm is changed. In their experiment, the start posture of the arm
was varied by altering the height of the elbow, essentially increas-
ing the elevation angle of the shoulder and the internal rotation
angle of the shoulder in tandem, to keep the hand in approxi-
mately the same spatial location. Here we examine whether a
similar result applies to the present naturalistic movement set.

For each neuron, we performed the following analysis. We
analyzed the posture of the arm at the start of each movement.
We focused on two aspects of arm posture: the elevation angle of
the shoulder and the internal rotation angle of the shoulder. We
constructed a single parameter, the “raised elbow” parameter, in
which both of these shoulder angles varied together. A high value
of raised elbow indicates that the shoulder elevation was high and
the shoulder was internally rotated, essentially bringing the arm
to a “chicken wing” posture with the elbow in upper space. Like-
wise a low value of raised elbow indicates that the shoulder ele-
vation was low and the shoulder was externally rotated, essen-
tially bringing the elbow to a low position. All movements were
divided into two equal groups along a median split: those with a
high raised elbow value at the start of the movement, and those
with a low raised elbow value at the start of the movement. For
each group of movements, we separately calculated a preferred
direction using a regression analysis as above (see Direction tun-
ing I). We then compared the two preferred directions by calcu-
lating the angular difference between them.

Figure 6A shows the result for one example neuron. The pre-
ferred direction was different for the trials with a high value of
raised elbow than for the trials with a low value of raised elbow,
with a change in preferred direction of 62° (Fig. 6A, thin vertical
line). Is this change in preferred direction the result of the change
in arm posture, or is it merely the result of noise in measuring an
unreliable preferred direction? To address this question, we took
the same total movement set and divided it in half randomly,
calculating a preferred direction for each half and then finding

the difference between the two preferred directions. We per-
formed this random division of the data 200 times. The results are
shown in the histogram in Figure 6A. When the movements were
randomly assigned to two groups, the difference in preferred
direction tended to be small, with a mean difference of 24°. When
the movements were assigned to two groups on the basis of arm
posture, the difference obtained was far from the randomized
mean, with a Z score of 2.81. For this particular cell, the start
posture of the arm had a significant effect on the preferred direc-
tion, beyond that expected by chance ( p � 0.0051). This example
neuron was not typical; it showed an unusually clear effect.

Figure 6B shows the distribution of Z scores obtained for all
neurons. If the posture of the arm had no significant effect on
direction tuning, then the Z scores should be equally distributed
about 0. The distribution is broad and extensively overlaps 0 but
is significantly more than 0 (mean of 0.51; t � 2.89; p � 0.0057).
Thus, the effect of starting posture on the preferred direction is
variable from neuron to neuron but across the population of
neurons is statistically significant. These results replicate the find-
ing of Scott and Kalaska (1995, 1997), indicating that the same
effect obtained in a constrained movement set can also be ob-
tained in a free-movement paradigm. The results of this section
and the previous section (see Direction tuning III: rotation of
preferred direction with changes in starting hand position) to-
gether confirm, in the free-moving paradigm, one of the basic
properties of motor cortex neurons that had been described pre-
viously: direction tuning is not consistent across all parts of space
or all configurations of the arm. Instead, it is most consistent
locally and changes with global changes of hand position or arm
posture (Caminiti et al., 1990; Scott and Kalaska 1995, 1997; Ser-
gio and Kalaska, 2003).

Direction tuning V: velocity tuning
The above sections explore speed tuning and direction tuning
separately. It has also been shown that motor cortex neurons are
tuned to velocity or to the combination of speed and direction
(Moran and Schwartz, 1999; Reina et al., 2001; Paninski et al.,
2004). Because speed accounted for almost none of the overall
variance, we expected a velocity model to account for approxi-
mately the same amount of variance as direction tuning alone.
We tested two velocity models.

First, we performed the same regression as above (see Direc-
tion tuning II: global), but the direction vectors in the regression
equation were replaced by velocity vectors (the velocity vector for
each movement was defined as the mean hand velocity during the
movement, whose components were the mean x, y, and z hand
velocity). The regression model returned a preferred velocity vec-
tor for each neuron with a cosine tuning to that preferred veloc-
ity. This model of velocity tuning resulted in a mean R 2 value of
0.09, not significantly different from the value obtained for re-
gression against direction alone (0.08).

Second, we performed the same regression as above (see Di-
rection tuning III: rotation of preferred direction with changes in
starting hand position) but again with the direction vectors in the
regression equation replaced by hand velocity vectors. This re-
gression model returned a preferred velocity vector that could
rotate depending on the start position of the hand. This model of
velocity tuning resulted in a mean R 2 value of 0.11, also not
significantly different from the value obtained for regression
against direction alone (0.13).

Figure 6. Change in preferred direction with starting arm posture. A, Results for one neuron.
All movements were divided on a median split according to a raised elbow parameter (see
Results, Direction tuning IV: changes of preferred direction with changes in initial posture). The
preferred direction was calculated separately for the two sets of movements, and the difference
in preferred direction (��) is shown as the vertical black line. To assess the reliability of this
result, the movements were also randomly divided into two groups and a �� was calculated.
This random division was performed 200 times, and the results are shown as a frequency
histogram. On this randomized distribution, the�� of the nonrandom, posture-based split was
significantly above the mean (Z � 2.81; p � 0.0051). B, Z scores for all cells tested as in A, This
distribution of Z scores was significantly �0 (mean of 0.51; t � 2.89; p � 0.0057).
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Direction tuning VI: modulation by a hand-position signal
The activity of motor cortex neurons is modulated not only by
the direction of a reach but also by the position of the hand
(Kettner et al., 1988; Caminiti et al., 1990; Scott and Kalaska,
1995, 1997; Sergio and Kalaska, 2003). This hand-position signal
is often included in the direction-tuning regression model as a
linear modulation of the baseline firing rate of the neuron or as a
linear modulation of the gain of the direction-tuning response.

We examined a model of this type that took into account both
direction and hand position. We began with the regression equa-
tion from above (see Direction tuning III), in which the preferred
direction was allowed to rotate depending on the starting posi-
tion of the hand. This model, as described above, resulted in a
mean R 2 value of 0.13. It was the best of the direction tuning
models in the sense that it captured the greatest percentage of the
variance. We then modified the regression in two ways. The A
term in the model (see Materials and Methods) was replaced by a
term that depended linearly on the x, y, and z starting position of
the hand. In this manner, the gain of the direction tuning re-
sponse could be modulated by hand position. Likewise, the B
term in the model was replaced by a term that depended linearly
on the x, y, and z starting position of the hand, thereby allowing
the baseline of the direction tuning response to be also modulated
by hand position. This model therefore examined the amount of
neuronal variance that could be attributed to a combination of
direction tuning and a linear effect of starting hand position.
Because the model took into account more than direction tuning,
it was expected to capture more of the neuronal variance than did
direction tuning alone.

The mean R 2 value for this combined regression was 0.16. One
interpretation is that direction tuning has improved by taking
linear hand-position trends into account. This interpretation,
however, is not correct. The model is not a direction-tuning
model; it is a mixed model. The 16% of the variance is not attrib-
utable to direction tuning alone. Instead, the results indicate that
direction tuning captures �13% of the variance and that adding
a linear dependence of firing rate on starting hand position can
add an additional �3% of the variance.

End-point tuning I: Gaussian tuning
In a standard test of direction tuning, the hand begins in a central
location and reaches to a variety of peripheral targets. The move-
ments therefore differ in both direction and final hand position.
Many studies have examined whether the tuning obtained in
these tasks is truly a tuning to direction or instead a tuning to the
final position of the hand (Georgopoulos et al., 1985; Kettner et
al., 1988; Caminiti et al., 1990; Fu et al., 1993). The studies test a
variety of starting and ending positions, such that both hand
position and direction can be independently varied. These studies
find that direction tuning is genuine and persists independently
of hand position, although there is also some effect of final hand
position. These experiments however were inadvertently de-
signed to favor the effect of direction tuning and to diminish the
effect of end-point tuning, in the following manner. Most of these
studies sampled the full range of possible directions, thereby
maximizing the chance of detecting direction tuning, even if that
tuning is broad. The studies, however, typically explored only a
small range of positions near central space. For example, a central
cube of space that is 10 cm in width comprises only �5% of the
volume of the workspace used by the monkey in the present
experiment. In one of the most extensive previous tests of the
workspace (Caminiti et al., 1990), three cubes of space, each 10
cm across, were tested, totaling �15% of the total workspace. If a

neuron is broadly tuned to hand end point, such that the tuning
curve can be seen only over the full workspace and varies little
over the limited range tested, then end-point tuning would be
minimized in these previous experiments. Here we examine
whether neurons are significantly end-point tuned over the
global movement set. It is important to note that we do not treat
direction tuning and end-point tuning as rival hypotheses. Neu-
rons may in principle be significantly tuned to direction in a
manner that emerges over local regions of space and in an inde-
pendent manner significantly tuned to end point in a manner
that emerges over a more global expanse of the workspace.

To test for end-point tuning, we modeled the firing rate of the
neuron as a Gaussian function of end point in which the Gaussian
was peaked at a preferred spatial location of the hand (see Mate-
rials and Methods). Movements that ended near that preferred
end point should be associated with high firing rates, and move-
ments that ended far from that preferred end point should be
associated with low firing rates. For each neuron, we obtained an
R 2 value indicating how well this end-point model fit the neuro-
nal data. Figure 7A shows the distribution of R 2 values for the
population of neurons. On average, the end-point model ac-
counted for 22% of the total neuronal variance.

Figure 7B–D shows the distribution of preferred hand posi-
tions for the tested neurons, as obtained with the end-point tun-
ing model. These preferred hand positions were dispersed
through the space around the animal. For some neurons, the
regression analysis found a preferred hand position at the edge of
the normal range of the workspace. In such a case, the neuron
essentially had a monotonic tuning to hand position, preferring
one extreme side of the workspace over the other. Most neurons,
however, had a preferred hand position inside the workspace and

Figure 7. Tuning of neurons to hand end point. A, Each neuron was tested with a tuning
model in which the neuron fired most during movements that terminated with the hand at or
near a specific location in space and fired progressively less during movements for which the
hand terminated progressively farther from the preferred location. The graph shows a fre-
quency histogram of R 2 values for all cells tested with this end-point model. B–D, Preferred
hand positions as determined by the end-point tuning model, displayed from three perspec-
tives. The schematic monkey drawing indicates approximate scale and orientation.
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therefore had a nonlinear response function that fell off to either
side of the preferred location. The tuning functions were gener-
ally broad: the mean width of the Gaussian tuning curve at half-
height was 18 cm, approximately half the range of the workspace.
Because of the broadness of these tuning curves, the end-point
tuning is unlikely to be a major source of signal in experiments
that test a small part of the workspace in front of the monkey. If
only a small volume of the workspace is tested, most neurons will
have a preferred hand position outside that tested region, and the
tuning to end point will either be missed (if the tested part of
space happens to overlap a relatively flat part of the tuning curve)
or will be measured as a graded, monotonic preference for one
side of the tested space over the other (if the tested part of space
overlaps with the rising slope of the tuning curve).

Figure 8A1 shows data from an example neuron. First, the
end-point tuning was found using the regression analysis de-
scribed above. This analysis obtained a Gaussian surface in three-
dimensional space for which the peak of the Gaussian corre-
sponded to the preferred end point of the neuron. In this graph,
the x-axis represents the distance in centimeters between the end
point of each movement and the preferred end point of the neu-
ron. The y-axis represents the firing rate of the neuron during the
movement. On average, movements that terminated near the
preferred end point (distance of 0) had higher firing rates, and

movements that terminated progressively
farther from the preferred end point had
progressively lower firing rates. This trend
is noisy for two reasons. First, only �24%
of the variance of this neuron was attribut-
able to the Gaussian tuning to the pre-
ferred end point. Second, the SD of the
Gaussian tuning was not equal in all spatial
directions. This cell was more sharply
tuned in the x dimension that in the y and
z dimensions. In terms of the Gaussian
tuning, 1 cm in the x direction is not equiv-
alent to 1 cm in the y or z direction. To
better show the Gaussian fit to the data,
Figure 8B1 shows a replotting of the same
graph. In this plot, the x-axis represents
the distance between the end point of each
movement and the preferred end point of
the neuron, but this distance now is ex-
pressed in SDs of the Gaussian tuning
function. Again, on average, movements
that terminated near the preferred end
point (within an SD of the peak of the
Gaussian) had higher firing rates, and
movements that terminated progressively
farther from the preferred end point had
progressively lower firing rates. This graph
shows in a more direct way the relation-
ship between firing rate and the proximity
of the movement end point to the pre-
ferred end point.

Figure 8C1 shows rasters of neuronal
activity for the same example neuron.
Each line in the raster display shows spike
data during the analysis window for a sin-
gle movement. Because different move-
ments were of different durations in the
naturalistic movement set, these lines in
the raster display are of different lengths.

The first raster display shows data from the 10% of movements
that terminated nearest to the preferred position; the second ras-
ter display shows data from the 10% of movements that termi-
nated farthest from the preferred position. These rasters show
that the firing rate was variable from movement to movement but
that the neuron tended to fire more during movements that ter-
minated near the preferred hand position (mean � SD of 49.8 �
20.6 spikes per second) and tended to fire less during movements
that terminated far from the preferred hand position (mean � SD
of 13.9 � 12.4 spikes per second) with a significant different
between these two firing rates (t � 11.3; p � 4 � 10�20).

Is the tuning to final hand position merely an artifact of direc-
tion tuning? The region of final hand positions that the neuron
appears to prefer may have been approached predominantly
from the preferred direction. For example, a neuron that prefers
upward movements might appear to prefer an upper location in
space. This explanation, however, is unlikely for several reasons.
First, it predicts that the preferred hand locations should cluster
systematically around the edges of the workspace, but, as shown
in Figure 7, the neurons preferred a range of final positions in-
cluding many within the workspace. Second, as described below
(see Simulated neurons), we simulated a direction-tuned neuron
and tested it on the actual movements measured from the mon-
key. The simulated neuron performed well on a direction-tuning

Figure 8. End-point tuning of three example neurons. A1–A3, Mean firing rate of example neurons 1–3 during each move-
ment as a function of the distance (centimeters) between the end of the movement and the preferred end point determined by
regression analysis. The neurons fired more during movements that terminated closer to the preferred end point. B1–B3, Same
data as in A but with the x-axis replotted in units of the SDs of the Gaussian tuning curve, displaying the tuning to end point more
clearly. C1–C3, Rasters showing high neuronal activity of example neurons 1–3 during the 10% of movements that terminated
nearest to the preferred end point and low neuronal activity during the 10% of movements that terminated farthest from the
preferred end point. Red tic marks indicate start and end of movement.
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model and showed little tuning to final hand position. A neuronal
signal that is known to be direction tuned, therefore, does not
produce an artifactual hand-position tuning.

Finally, Figure 9 shows a third analysis to address this ques-
tion. Figure 9A1 contains data from one example neuron. The
dots show the final hand positions for the 10% of movements that
terminated closest to the preferred hand position. Figure 9B1
shows the directions of the movements that terminated in those
locations. This movement set included a range of directions and
did not approach the end points from predominantly one direc-
tion. We used this limited movement set to obtain a preferred
direction (using a standard cosine tuning model as above, see
Direction tuning I). The direction-tuning R 2 value was 0.18. (The
relatively low R 2 value, below the mean of 0.42 obtained for local
direction tuning in Direction tuning I, probably reflects the fact
that these movements, although more local than a full movement
set, are nonetheless more dispersed than in our test of local direc-
tion tuning.) The preferred direction among these movements,
plotted as a thick line in Figure 9A1, was aimed down and to the
left, whereas the preferred hand location was up and to the right.
For this neuron, the preferred direction was pointed the wrong
way to account for the preferred hand location. Figure 9 also
shows a second example cell. In general, the preferred direction
had no obvious relationship to the preferred position. Thus, al-
though neurons are to some degree direction tuned (as outlined
in the previous sections) and are to some degree tuned to the end
point of the movement, the preference for a particular final po-
sition of the hand apparently cannot be explained as a conse-
quence of a preference for a particular direction of motion. This
question is further addressed in the next section.

End-point tuning II: directional convergence
Previous experiments suggest that neurons rarely show a prefer-
ence for movements directed toward a specific location in space

(Caminiti et al., 1990; Sergio and Kalaska, 2003). The preferred
direction of a neuron does not change systematically across space
in such a way that it aims toward a point of convergence. Instead,
when the preferred direction is assessed in different regions of
space, it tends to change somewhat idiosyncratically. On average
across neurons, it tends to rotate in the same direction as the
rotation of the shoulder. Similar results were confirmed in the
present experiment (see Direction tuning III: rotation of pre-
ferred direction with changes in starting hand position). How can
this result, a failure of the preferred direction to converge to a
point, be reconciled with the result of the previous section, that
neurons fire most during movements that end near a preferred
location in space? On first sight, the two results appear to be
contradictory.

There are, however, at least two ways to define end-point
tuning. One is a proximity model, and the other is a directional
model. In the proximity model, tested in the previous section, a
neuron will fire best during movements that terminate near a
preferred position, regardless of the direction of the movement.
For example, a movement that starts at the preferred position and
ends 1 cm away might result in a high firing rate, although the
movement is directed away from the preferred position. Like-
wise, a movement that starts 20 cm from the preferred position
and ends 15 cm from it might result in a low firing rate, although
the movement is directed toward the preferred position. This
model, in which trajectory information is discarded and only the
final position enters the equation, accounted for 22% of the neu-
ronal variance on average, as described above.

In a directional model of end-point tuning, in contrast, the
neuron fires most during movements directed toward the pre-
ferred position and fires least during movements directed away
from the preferred position, regardless of whether the movement
terminates near or far from the preferred position. For example, a
movement that starts at the preferred position and ends 1 cm
away might result in a low firing rate, although the movement
ends near the preferred position. Likewise, a movement that
starts 20 cm from the preferred position and ends 15 cm from it
might result in a high firing rate, although the movement ends far
from the preferred position. This model, in which the final posi-
tion of the hand at the end of each movement is discarded and
only the direction enters the equation, has generally been found
to account for little of the neuronal behavior (Caminiti et al.,
1990; Sergio and Kalaska, 2003).

To determine whether our dataset was consistent with previ-
ous findings, we also tested a directional model of end-point
tuning. In this model, for each movement, two vectors were de-
fined. The first vector connected the start point of the movement
to the end point of the movement. The second vector connected
the start point of the movement to a preferred end point of the
neuron. The angular deviation between these vectors was defined
as ��. In the regression equation, the firing rate was modeled as a
cosine function of �� [firing rate � A cos (��) 	 B]. For each
neuron, the regression obtained the preferred end point that best
fit this model. For a neuron that follows this model, the firing rate
should be highest when the movement is directed toward the
preferred end point and lowest when the movement is directed
away from the preferred end point. This model resulted in a mean
R 2 value across neurons of 0.07, less than the mean R 2 value of
0.22 obtained for the Gaussian tuning to end point described in
the previous section.

It is instructive to compare the three general classes of direc-
tion model tested in the present experiment. First, a standard
direction model, in which the preferred direction is the same

Figure 9. Direction tuning does not explain end point tuning. A1, A2, Data from two exam-
ple neurons. The dots show the final hand position for the 10% of movements that terminated
closest to the calculated preferred position. The line shows the preferred direction of movement
as calculated using the same local set of movements. The blue dot shows the end of the move-
ment vector. B1, B2, Data from the same neurons shown in A. Each line depicts a movement
(straight line connecting the start and end point of the movement), and each red dot shows the
end point of the movement, for the same movements whose end positions are shown in A.
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everywhere in space (see above, Direction tuning II: global), ac-
counted for 8% of the variance on average. Second, a direction
model in which the preferred direction could rotate in different
regions of space (see above, Direction tuning III: rotation of pre-
ferred direction with changes in starting hand position) ac-
counted for 13% of the variance. This rotating model tended to
select a preferred direction that rotated approximately with the
shoulder angle. This rotation of the preferred direction results in
a diverging pattern, in which preferred directions in adjacent
parts of space point slightly away from each other. It is not sur-
prising therefore that the third model (of the present section), in
which the preferred directions in different regions of space were
constrained to converge toward a common location, performed
somewhat less well than either of the previous ones, accounting
for 7% of the variance.

These results together with the results of the previous sections
suggest that neurons are to some extent tuned to end point (mean
R 2 � 0.22). This end-point tuning, however, should not be con-
strued as a set of preferred directions aimed at a common location
in space. The neurons are not well tuned to a converging pattern
of preferred directions. Instead, the neurons are tuned to any
movements that terminate near a preferred location. The spatial
tuning curve is broad, the preferred region is large, the natural
hand movements are often relatively short (mean length of 8 cm),
and therefore a variety of movements aimed in all directions can
terminate within the preferred region yielding a high firing rate.
In addition, superimposed on this spatial tuning for end point,
the neurons are tuned to some extent to direction (mean R 2 of
�0.08 – 0.13 depending on the model used), in which the pre-
ferred direction has little obvious relationship to the preferred
hand location.

End-point tuning III: start-point or end-point tuning?
As described above, the firing rate of the neurons tended to be
larger for movements that terminated near a preferred hand lo-
cation, and this correlation accounted for �22% of the neuronal
variance. However, because the monkey’s spontaneous move-
ments were relatively short (mean of 8 cm), the movements
tended to start and end in a similar region of space. Start point
and end point, therefore, were correlated across the global move-
ment set. Were the neurons tuned specifically to the end point of
the movement, or was neuronal activity equally determined by
the proximity of the start point to the preferred location?

To approach this issue, we performed the following analysis.
For each neuron, we selected the 10% of movements that termi-
nated nearest to the preferred position. Figure 9B1 shows this set
of movements for one example neuron. These movements con-
tain some variance in ending and starting position. Because this
local region of space around the preferred location had a diame-
ter that approximated the average length of a movement, there-
fore, within this movement set, no significant correlation existed
between start point and end point. We then asked, within this set
of movements near the preferred location, whether the distance
between the start point of a movement and the preferred point
was significantly related to firing rate (using a linear regression
between firing rate and distance from start point to preferred
point). This was not typically the case. Across neurons, the mean
R 2 value for this linear regression was 0.02, and 7% of the neurons
showed a significant relationship. In contrast, we asked whether
the distance between the end point of a movement and the pre-
ferred point was significantly correlated with firing rate. A rela-
tionship was obtained in which the firing tended to be higher for
movements that terminated closer to the preferred point. The

mean R 2 value for this linear regression was 0.20, and 65% of the
neurons showed a significant relationship. These results suggest
that the proximity of the end points to a preferred location sig-
nificantly affected the firing rate of neurons and that the proxim-
ity of the start points to the preferred location was at least a much
weaker influence. This question of whether the neurons prefer-
entially encode the end state of the movement or whether the
firing rate equally reflects the initial state is further addressed
below in two sections (see Neurons are more end-posture than
start-posture tuned I: analysis of temporal offsets; and Neurons
are more end-posture than start-posture tuned II: analysis of
movements near the preferred posture).

End-posture tuning
Electrical stimulation of motor cortex on a behaviorally relevant
timescale can evoke movements that terminate in specific pos-
tures (Graziano et al., 2002a, 2004a,b, 2005; Cooke and Graziano,
2004a,b). For example, stimulation of one location in cortex
might bring the hand to the mouth with the elbow in lower space,
the forearm supinated such that the palm faces the mouth, the
wrist slightly flexed, the fingers in a grip posture, and the mouth
open. The effect of stimulation is therefore not merely to bring
the hand to a specific end point but to bring the many joints of the
arm to a specific final configuration or posture. Observational
studies of the normal spontaneous behavior of monkeys indicate
that a high proportion of time is spent using the arm as a postural
device (Graziano et al., 2002b, 2004a). Psychophysical studies in
humans suggest some degree of encoding of the final posture of a
movement (Feldman, 1986; Rosenbaum et al., 1995; Desmurget
and Prablanc, 1997). We therefore asked to what degree neurons
in motor cortex are tuned to the posture reached by the arm at the
end of each movement.

Eight degrees of freedom of the arm were monitored, includ-
ing grip aperture and seven joint angles. These degrees of freedom
define an eight-dimensional posture space. We modeled neuro-
nal firing rate as a Gaussian surface in eight-dimensional space
whose peak corresponds to the preferred end posture. Move-
ments that terminate at a posture near the peak of the Gaussian
should be associated with a high neuronal firing rate, and move-
ments that terminate at a posture far from the peak of the Gauss-
ian should be associated with a low neuronal firing rate. For each
neuron, we obtained an R 2 value indicating how well this model
fit the neuronal data. The distribution of R 2 values across the
population of neurons is shown in Figure 10. The mean R 2 value
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Figure 10. Comparison of four regression models. Each neuron was tested with a tuning
model in which the neuron fired most during movements that terminated with the eight joints
of the arm at or near a specific postural configuration. This end-posture tuning is shown as a
frequency histogram of R 2 values. Also shown is a frequency histogram of speed tuning (from
Fig. 3D), direction tuning in which the preferred direction was allowed to rotate depending on
starting hand position (from Fig. 5B), and tuning to the three-dimensional end point of the
movement (from Fig. 7A).
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was 0.36. For comparison, Figure 10 also
shows the distribution of R 2 values for
speed tuning, for the complex direction
tuning in which the preferred direction
could rotate with the starting position of
the hand, and for end-point tuning in
three-dimensional Cartesian space. Of the
models of neuronal tuning tested here, the
one that performed best involved so called
intrinsic coordinates (in this case joint an-
gles) rather than extrinsic coordinates (di-
rection or Cartesian hand location), in
agreement with previous suggestions that
motor cortex emphasizes intrinsic coordi-
nates (Scott and Kalaska, 1997). These
tuning curves to end posture are examined
in greater detail in the following six
sections.

Examples of end-posture tuning
Figure 11A1 shows data from an example
neuron. First, the end-posture tuning was
found using the regression analysis de-
scribed above. This analysis obtained a
Gaussian surface in eight-dimensional
posture space for which the peak of the
Gaussian corresponded to the preferred
posture of the neuron. In this graph, the
x-axis represents the distance in posture
space between the final posture of each
movement and the preferred posture of
the neuron. It is important to note that this
distance is not the distance of the hand
from a preferred location in space, but
rather the distance of the arm from a pre-
ferred configuration in posture space.
Thus, the units cannot be in Cartesian cen-
timeters. Instead, we expressed the units in
SDs of the Gaussian fitting function. In
this manner, all eight dimensions of pos-
ture space can be expressed in the same
units, and a one-dimensional graph can be
presented. The advantage of the one-
dimensional graph is that it shows the
Gaussian fit to the data. On average, move-
ments that terminated near the preferred
posture (within an SD of the peak of the
Gaussian) had higher firing rates, and movements that termi-
nated progressively farther from the preferred posture had pro-
gressively lower firing rates. Approximately 33% of the variance
of this neuron was attributable to the Gaussian tuning to the
preferred posture (R 2 � 0.33; p � 0.0001).

Figure 11B1 shows rasters of neuronal activity for the same
example neuron. Each line in the raster display shows spike data
during the analysis window for a single movement. Because dif-
ferent movements were of different durations in the naturalistic
movement set, these lines in the raster display are of different
lengths. The first raster display shows data from the 10% of
movements that terminated nearest to the preferred posture; the
second raster display shows data from the 10% of movements
that terminated farthest from the preferred posture. These rasters
show that the firing rate was variable from movement to move-
ment, but that the neuron clearly fired more during movements

that terminated near the preferred posture. Although only 33% of
the neuronal variance was attributable to end-posture tuning, the
effect is clearly visible in the rasters.

Figure 11C1–E1 shows more data from the same example neu-
ron. Each stick figure shows the configuration of the arm at the
termination of a movement. The figure shows the 10% of move-
ments that terminated closest to the preferred posture. This dis-
play does not capture the full eight-dimensional posture space.
Several degrees of freedom, especially the internal/external rota-
tion of the shoulder and the pronation/supination of the forearm,
are not easily visible. However, the graph does give some sense of
the range of postures preferred by this neuron. The neuron is
more narrowly tuned to some joints (such as the shoulder eleva-
tion) than to others (such as the shoulder azimuth). As a result,
this range of preferred postures does not correspond neatly to a
small cluster of hand positions in space. Instead, a large and ir-

Figure 11. End-posture tuning of four example neurons. A1–A4, Data from example neurons 1– 4. For each neuron, the
preferred multijoint posture was determined by regression analysis. The final posture of each movement was compared with the
preferred posture. The distance between them was calculated in eight-dimensional posture space. Distance was measured in units
of SDs of the Gaussian tuning function, to express all eight dimensions in posture space in equivalent units. This distance is plotted
on the x-axis, and firing rate during the movement is plotted on the y-axis. B1–B4, Rasters showing high neuronal activity during
the 10% of movements that terminated nearest to the preferred end posture and low neuronal activity during the 10% of
movements that terminated farthest from the preferred end posture. Red tic marks indicate start and end of movement. C1–C4,
Stick-figure drawings showing front view of the end postures for the 10% of movements that terminated nearest to the preferred
end posture. Three joints are shown: shoulder, elbow, and wrist. The schematic monkey drawing indicates approximate scale and
orientation. D1–D4, Same as C but side view. E1–E4, Same as C but top view.
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regular region of hand space is represented by these postures.
This finding that postural tuning is more sharply peaked for some
degrees of freedom than for others is discussed in greater detail in
below (see Posture subspaces). For this neuron, the preferred
posture involved a raised elevation of the shoulder lifting the
hand mainly into upper space, a range of azimuth angles that
placed the hand in a band of frontal space, a partially extended
elbow that placed the hand away from the body, an extended
wrist angle, and a grip aperture (data not shown) that was on
average 2 cm. The posture is similar to a naturalistic reach to
grasp or manipulate a small object in upper frontal space.

Figure 11 also shows the end-posture tuning for three other
example neurons.

Range of preferred joint angles
Some experiments have examined linear models of tuning to
joint rotation (Reina et al., 2001). In a linear model, a neuron will
prefer rotation of a joint to one or another extreme. The present
model of end-posture tuning is nonlinear; it assumes that neu-
rons fire best during rotation from any direction toward a pre-
ferred joint angle. However, the preferred angle could in princi-
ple lie at or beyond the edge of the range of movement. In this
case, the nonlinear model used here would approximate the lin-
ear models used elsewhere. An important question, therefore, is
whether the preferred joint angles as determined by the regres-
sion model tend to fall at the extreme of the range of motion or
within the range of motion. Figure 12 shows the result. To exam-
ine those neurons that had clearly preferred postures, we ranked
neurons by the sharpness of the Gaussian tuning function and
arbitrarily chose the 50% of neurons that were most sharply
peaked, thus the neurons for which the end posture was most
clearly specified. These neurons are represented in Figure 12.
Each frequency histogram shows data for one joint. For the most
proximal joints, especially the three shoulder joints, neurons
were tuned to a range of different preferred angles including
those in the middle of the range. For the more distal joints, neu-
rons were more likely to be tuned to an extreme. For example,
neurons tended to prefer a closed-grip aperture. Note that the
same neuron might be tuned to an intermediate shoulder angle
and a closed grip. It was not the case that some neurons were
tuned to proximal joints and others to distal joints; rather, neu-
rons tended to be tuned to a combination of many joints, an issue
discussed in greater detail below (see Posture subspaces).

The plot in Figure 12 provides some indication of the postures
most commonly preferred by neurons. Many neurons preferred a
shoulder azimuth at �90°, orienting the arm into the front por-
tion of space rather than to the side (0°), a shoulder elevation of
�80° and an elbow extension of �130°, which places the arm in
a raised and extended posture, the wrist extended, and the grip

closed. These most common joint angles correspond to a typical
arm posture of the monkey, as if it had reached out to grip an
object in central space. A range of other postures was also repre-
sented, as is evident from the range of joint angles in Figure 12.
Because electrical stimulation in different regions of the precen-
tral gyrus tended to evoke different common postures of the arm
(Graziano et al., 2002a), it is possible that neuronal recordings
from other cortical regions in the precentral gyrus might have
revealed a different distribution of preferred postures.

To compare directly with a linear model of neuronal tuning in
joint space, we also tested neurons using a simple eight-
dimensional linear regression comparing mean firing rate during
a movement with mean joint angular speed. Such a regression
model assumes that a neuron prefers movement of a joint in one
direction only, toward one extreme angle or the other. The mean
R 2 for this linear model was 0.14, significantly less than the mean
R 2 of 0.36 for the Gaussian end-posture model (t � 7.0; p � 3.2 �
10�9). This result confirms that neurons are tuned to movement
through joint space, but that the linear model misses a common
feature of the tuning, a tuning to joint rotations that terminate at
an intermediate posture.

Posture subspaces
As described above, for each neuron a regression model was used
to obtain the best-fitting Gaussian tuning function in eight-
dimensional posture space. On examining the resultant Gaussian
tuning functions, we found that neurons were not equally well
tuned to all eight dimensions of posture space. We examined the
sharpness of tuning to each of the eight degrees of freedom. Fig-
ure 13A shows the result for one example neuron. For each joint,
we calculated the width of the tuning curve at half height, in
degrees of joint angle. We then divided this width by the range of
movement measured during the animal’s spontaneous behavior,
resulting in a tuning width index that could be compared across
joints. A tuning width index of 1 indicates that the width of the
tuning curve was approximately the same as the full range of
movement. A tuning width index �1 indicates a narrower tuning
curve, and a tuning width index �1 indicates a tuning curve so
broad that it essentially was not relevant over the normal range of
movement of the joint. If the index was 1 or less, we classified the
neuron as well tuned to that joint. On this criterion, this example
neuron was well tuned to four joints of the eight (four joints show
a tuning width index �1). This neuron was tuned to shoulder
azimuth, internal/external shoulder rotation, wrist extension,
and grip aperture. It was therefore tuned to a mixture of proximal
and distal joints. It was essentially untuned to the other joints.
Figure 13B–D shows several more example neurons tuned to
different combinations of joints. Figure 13E shows the mean
across neurons. The joints are arranged in this graph in order

Figure 12. Distribution of joint angles preferred by neurons. For each joint, a frequency histogram shows the proportion of neurons tuned to a particular final joint angle. Only the 50% most
sharply tuned neurons were plotted for each graph. Most neurons were tuned to more than one joint and are therefore represented on more than one histogram.
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from most sharply tuned to least sharply tuned. On average, neu-
rons were well tuned to four joints (tuning width index �1) and
relatively poorly tuned to the remaining joints (tuning width
index �1). These results show that it is not quite correct to view
the neurons as tuned to a preferred final posture in an eight-
dimensional posture space. Rather, the neurons are tuned within

posture subspaces, each neuron primarily tuned to a subset of
joints and less well tuned to the remaining joints.

One caveat of the above analysis is that the joints may be
correlated with each other; hence, a neuron that is genuinely
tuned to one joint may appear to be tuned to other, correlated
joints. To address this caveat, we performed an alternative, con-
servative analysis that removed the covariance among joints. For
each neuron, we first tested the end-posture model with a regres-
sion analysis as described above and arrived at an R 2 value indi-
cating how much of the total variance could be explained by that
model. We then performed an n � 1 regression to determine how
much of that explained variance could be attributed solely to each
joint, once the variance explained by the remaining seven joints
had been removed. In this manner, the correlation among joints
was explicitly taken into account and removed from the analysis.
We then asked, for each joint, whether it made a statistically
significant unique contribution to the R 2. This method is conser-
vative, because it eliminates signal that overlaps among joints and
considers only the component of signal that is unique to each
joint. However, using this regression method, we obtained a sim-
ilar result. Each neuron on average was significantly tuned to four
joints of the eight.

Comparison of end-posture tuning and end-point tuning
The previous sections examined two types of end-state tuning:
tuning to end point and tuning to end posture. Do the hand
positions associated with the preferred postures tend to match
the hand positions associated with the preferred end points? Such
a match would provide a validity check, showing that two differ-
ent analysis methods arrived at a similar result.

This question is complicated by two caveats. First, as described
above, the neurons are not typically narrowly tuned to all eight
angles that make up the posture of the arm. Each neuron tends to
be narrowly tuned to an average of four joints of the eight. A set of
postures near the preferred posture therefore corresponds to a
narrow range of angles for some joints and a wide range of angles
for other joints. This in turn can correspond to a large, irregular
set of hand positions (for examples, see Fig. 11).

Second, a hand position associated with a preferred posture
can also be reached by postures that are not preferred by the
neuron. With eight degrees of freedom in the arm, any hand
position can be achieved through a large range of postures.

For these two reasons, there is no clean mapping between
hand position and arm posture. Therefore, a strict correspon-
dence between the hand positions preferred by the neurons and
the arm postures preferred by the neurons should not be ex-
pected. With these two caveats in mind, however, it may still be
possible to find some degree of correspondence between the
cloud of hand positions associated with the preferred posture and
the cloud of hand positions associated with the preferred end
point.

For each neuron, we obtained the 10% of movements that
terminated closest to the preferred posture of the neuron, as de-
termined by the eight-dimensional regression against end pos-
ture (Fig. 11C1). We obtained the mean x, y, and z location of the
hand at the end of these 10% of movements. For the same neu-
ron, we obtained the 10% of movements that terminated closest
to the preferred hand position as determined by the three-
dimensional regression against end point. We obtained the mean
x, y, and z location of the hand at the end of these 10% of move-
ments. For each neuron, we therefore obtained a mean hand
position associated with the preferred posture (posture-defined
position) and a mean hand position associated with the preferred

Figure 13. Tuning of neurons to subsets of joints. A, Data from one example neuron. The
end-posture regression analysis returned a set of preferred joint angles to which the cell was
tuned in a Gaussian manner. For each joint, a tuning width index was calculated. Tuning width
index is the width of Gaussian tuning curve at half height in degrees of joint angle/natural range
of joint motion measured during movement. Tuning index of 1 indicates that the width of the
tuning curve at half height approximated the normal range of joint motion. Lower tuning index
corresponds to sharper tuning. The graph shows that the neuron was sharply tuned to four
joints and poorly tuned to the remaining four joints. The joints are (in order) shoulder azimuth,
shoulder elevation, shoulder external/internal rotation, elbow extension, forearm pronation,
wrist extension, wrist adduction, and grip aperture. B, An example neuron sharply tuned to five
of the eight joints. C, An example neuron sharply tuned to six of the eight joints. D, An example
neuron sharply tuned to seven of the eight joints. E, For each neuron, the joints were arranged
from most sharply tuned to least sharply tuned; the results were then averaged across neurons.
On average, neurons were well tuned to four of the eight joints.
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end point (end-point-defined position). We then asked whether
the posture-defined position and the end-point-defined position
were correlated across neurons. In the vertical dimension, the
posture-defined position and the end-point-defined hand posi-
tion were highly significantly correlated (R � 0.62; p � 0.00003).
In the mediolateral dimension, the correlation was also highly
significant (R � 0.58; p � 0.0001). Finally, in the front-to-back
dimension, the correlation was also highly significant (R � 0.43;
p � 0.007). These results indicate that the preferred hand posi-
tions obtained through the end-point model tended to approxi-
mately match the hand positions associated with the preferred
postures obtained through the end-posture model. One possibil-
ity is that the tuning to end point, accounting for a mean of 22%
of the neuronal variance, was partly a noisy reflection of a more
robust tuning to arm posture, accounting for 36% of the neuro-
nal variance.

Neurons are more end-posture than start-posture tuned I:
analysis of temporal offsets
Numerous studies have reported that neuronal activity in motor
cortex is modulated by posture (Kettner et al., 1988; Caminiti et
al., 1990; Fu et al., 1993; Scott and Kalaska, 1995, 1997; Paninski
et al., 2004). The present study supports the same finding, show-
ing in addition that over the larger workspace the postural tuning
curves can take the form of a broad, nonlinear tuning to a pre-
ferred posture. One question, however, is whether this postural
tuning reflects the active control of movement, such as move-
ment planning and execution, or whether it reflects feedback
signals that inform the motor cortex about the state of the limb.
One way to address this question is to ask whether the neurons
are tuned specifically to the final posture of a movement, as if in
preparation of that end state, or whether the neurons are equally
tuned to the starting posture of the movement. We therefore
performed the regression analysis described above (see End-
posture tuning) but regressing against the start posture of each
movement rather than the end posture to determine whether
neurons show a similar Gaussian tuning, and a similar degree of
fit, to a start-posture model.

The mean R 2 for the start-posture tuning model was 0.33,
nearly as high as the R 2 for end-posture tuning (0.36). At first
glance, this high value would seem to suggest that the neurons are
modulated by current or recent posture rather than preferentially
encoding the anticipated posture. An analysis of the temporal
offsets, however, revealed a different reason for this high R 2

value. In this section, we first describe the temporal offsets for
several regression models and then return to the question of start-
posture coding.

Figure 14 shows the optimized temporal offsets obtained for
five of the above regression analyses. In this graph, negative val-
ues represent offsets in which the window for neuronal activity
was shifted earlier than the movement window. For example,
Figure 14A shows the offsets obtained for direction tuning (fol-
lowing the method used in Direction tuning II: global). The
mean � SD temporal offset for direction tuning was �36 � 117
ms and was not significantly different from 0, indicating that on
average the regression against direction was optimized when us-
ing neuronal activity that was approximately coincident with the
movement. Figure 14 also shows the result for the more complex
direction tuning model in which the preferred direction could
rotate depending on starting hand position (Fig. 14B), speed
tuning following the method used in Speed tuning 1 (Fig. 14C),
and tuning to end posture (Fig. 14D). In all of these cases, the

offsets were distributed around and not significantly different
from 0.

Previous studies reported offsets in which neuronal activity
significantly preceded movement (Moran and Schwartz, 1999;
Reina et al., 2001; Paninski et al., 2004). In our data, the temporal
offsets for direction tuning trended in that direction but were not
significantly different from 0. One possible reason is that, in a
trained movement task in which the animal responds to task cues,
the movement involves a relatively consistent reaction time and
planning period, whereas in the present study in the spontaneous
movement set, the animal may be guiding the movements more
on the fly and with less preplanning, resulting in shorter and
more variable temporal offsets. As a result, the lag between neu-
ronal activity and movement no longer reaches significance.

Figure 14 also shows that the temporal offsets for speed and
direction models were more tightly distributed than for the arm-
posture model. This pattern resembles previous findings (Panin-
ski et al., 2004). One interpretation is that the control of direction
and speed can be exercised only in association with the move-
ment itself because these parameters are not defined when the
arm is stationary, whereas the active control of posture must be
exercised at all times. Therefore, one might expect the neuronal
control of posture to extend over a greater range of times than the
neuronal control of direction, resulting in a spread-out distribu-
tion of temporal offsets. A second speculation (proposed by Pan-
inski et al., 2004) is that the modulation of neuronal activity by
posture reflects both feedforward and feedback signals and there-
fore has a greater range of temporal offsets. As described next,
however, other aspects of the data suggest that the postural tun-

Figure 14. Temporal offsets for six regression models. For each regression model, the kine-
matic data were selected from a fixed time period during the movement, and the neuronal data
were selected from a time period equal in duration but offset by a temporal lag. For each neuron,
the temporal offset that optimized the regression was selected. These optimal temporal offsets
are shown in the frequency histogram in which the x-axis represents temporal offset. Negative
values indicate neuronal activity leading movement. A, Temporal offsets for direction tuning
following the method in Results (Direction tuning II: global). B, Temporal offsets for direction
tuning following the method in Results (Direction tuning III: rotation of preferred direction with
changes in starting hand position). C, Temporal offsets for speed tuning following the method
in Results (Speed tuning I). D, Temporal offsets for end-posture tuning. E, Temporal offsets for
start-posture tuning. F, Temporal offsets for start-posture tuning in which the range of possible
offsets was extended downward to �1000.
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ing reflected relatively more of a feedforward signal than a feed-
back signal.

Figure 14E shows the temporal offsets for start-posture tun-
ing. These offsets were shifted with respect to the others and were
highly significantly below 0 (t � 4.94; p � 0.00004). A compari-
son between Figure 14, D and E, shows the difference between
end-posture tuning, for which the temporal lags were distributed
broadly around the movement period and start-posture tuning,
for which the temporal lags mainly preceded the movement. To
further explore this effect, we extended the range of possible off-
sets downward from �286 to �1000 ms and reran the start-
posture analysis. Figure 14F shows the resulting distribution of
temporal offsets. The mean is �413 ms.

These results help to answer the question raised at the begin-
ning of this section. Are the neurons tuned to the anticipated,
upcoming posture, as though contributing to the control of the
movement, or are they equally tuned to the previous, starting
posture, as though reflecting a feedback signal? The activity dur-
ing a movement is indeed tuned to the final posture of the move-
ment, but it is not really tuned to the start posture. Rather, to
obtain a high R 2 value for the start posture, it is necessary to select
neuronal activity from well before the start of the movement. In
effect, neuronal activity during the previous movement is corre-
lated with the end posture of that previous movement. This result
suggests that the neuronal tuning to posture reflects relatively
more an anticipation of the future state of the limb rather than a
feedback signal about a recent state of the limb. Both influences
probably contribute, but the planned future posture appears to
be the larger influence according to this analysis. The next section
provides a second, independent approach to the same question
and arrives at the same answer.

Neurons are more end-posture than start-posture tuned II:
analysis of movements near the preferred posture
With relatively short movements (mean length of 8 cm), the end
posture of a movement might often be similar to the start pos-
ture. Movements that end in the preferred region may therefore
also tend to start in the preferred region and remain in the pre-
ferred region throughout the movement. Although the firing rate
is typically high during these movements near the preferred pos-
ture, is it because the start posture was near the preferred posture
or because the end posture was near the preferred posture?

To approach this issue, we performed the following analysis.
For each neuron, we selected the 10% of movements that termi-
nated nearest to the preferred posture. These movements were
typically associated with a high firing rate, because they termi-
nated near the peak of the postural tuning curve (for examples,
see Fig. 11B1–B4). The purpose of the analysis was to examine
this set of movements clustered around the preferred posture and
to determine whether the firing rate was more related to the
proximity between the start posture and the preferred posture or
to the proximity between the end posture and the preferred
posture.

We performed two linear regressions. First, we asked whether
the distance between the start posture of a movement and the
preferred posture was significantly related to firing rate. This was
not the case. Across neurons, the mean R 2 value for this linear
regression was 0.02, and none of the neurons showed a significant
relationship. The firing rate during movement tended to be high
because the movements were near the preferred posture, but the
firing rate tended to be uniformly high regardless of the proxim-
ity of the start posture of the movement to the preferred posture.

In contrast, using the same subset of movements, we asked

whether the distance between the end posture of a movement and
the preferred posture was significantly correlated with firing rate.
A relationship was obtained in which the firing tended to be
higher for movements that terminated closer to the preferred
posture. The mean R 2 value for this linear regression was 0.4, and
71% of the neurons showed a significant relationship.

Thus, among the subset of movements near the preferred pos-
ture, the firing rate was dependant on the end posture and inde-
pendent of the start posture. This result, like the result of the
previous section, strongly suggests that the postural tuning ob-
tained here reflects primarily an anticipation of the planned state
of the limb rather than a feedback signal about the recent state of
the limb.

Combined tuning: speed, direction, end point, and
end posture
We combined speed tuning, direction tuning, end-point tuning,
and end-posture tuning in a hierarchical regression to determine
how much of the total variance can be explained by these vari-
ables. We first regressed against end posture, then regressed the
residual against end point, then regressed the second residual
against the direction-tuning model in which the preferred direc-
tion could rotate systematically with changes in the initial hand
position, and finally regressed the third residual against the mean
speed of the hand during each movement. Because of the possible
partial overlap of the different tuning models, the combined R 2

value is expected to be less than the sum of the separate R 2 values
given in the previous sections. Figure 15 shows the R 2 values
obtained by this sequential regression. On average, 44% of the
variance was explained by the combination of parameters. The
remainder of the variance may be attributable to the many other
parameters critical to movement but not tested here, to the
changing motivational or attentional state of the animal, and to
noise in the measurement of arm movement and neuronal
activity.

Simulated neurons
To test the validity of the above regression models, we modeled
artificial neurons. One artificial neuron was direction tuned. The
data were generated using the cosine direction-tuning model
with Gaussian noise added to create a neuron that was noisily
tuned to a preferred direction. We simulated the firing rate that
this artificial neuron should have during a set of actual, recorded
hand movements. These firing rates were then subjected to the
regression analyses described above. Figure 16A shows the result.
When tested with a direction-tuned model, the artificial direction
tuned neuron showed a midrange R 2 value consistent with its
noisy tuning. When tested with the other regression models, it
showed near zero R 2 values. Thus, when testing a neuron that is
truly direction tuned, the analyses extracted a directional tuning
signal and not a spurious hand-position-tuning or posture-
tuning signal.

In a similar manner, we generated an artificial neuron that was

Figure 15. Frequency histogram of R 2 values for hierarchical regression. This regression
model included tuning to a preferred final posture, tuning to a preferred final hand position,
tuning to a preferred direction that can rotate with changes in the starting hand position, and a
linear dependence on mean speed.
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tuned to final hand location in space and an artificial neuron that
was tuned to final posture of the arm. As shown in Figure 16, B
and C, the R 2 value for each type of neuron was highest for the
matching type of regression model and near zero for the non-
matching regression models. Finally, we generated an artificial
neuron that was not tuned. Its firing rate was randomized. Figure
16D shows that all regression models returned a low R 2 value for
this artificial neuron, with no tendency for the models that had
more regressors to extract a higher R 2 value.

Muscle activity
We are currently performing an experiment examining muscle
activity during untrained movement of the arm, and we report
here some preliminary data to compare with the neuronal data.
In these experiments, we measure electromyographic (EMG) ac-
tivity. One technical limitation that we have not yet solved is that
our method of tracking the arm requires powered LEDs fixed to
the arm that generate electrical noise in the EMG signal. Thus far,
recordings from the forearm and hand muscles are not reliable.
Recording EMG from the upper arm has been more successful,
partly because the muscles are bigger and produce more reliable
signals and partly because fewer powered LEDs are fixed to the
upper arm. Here we report on preliminary data from the biceps.

Fine insulated stainless steel wires were threaded into a 22
gauge syringe needle and inserted into the long biceps. The wires
had an exposed tip of 1–2 mm. Three wires spaced �5 mm apart
were inserted to provide input to a differential amplifier and its
ground (single-neuron amplifier model 1800; A-M Systems).
The amplifier filters were set with a low cutoff at 300 Hz and a
high cutoff at 5000 Hz. Although some studies use a lower level
for the low cutoff (Cheney et al., 1985), we found that a 300 Hz
cutoff was helpful to remove low-frequency noise. The EMG sig-
nal was digitized at a rate of 20,000 Hz, rectified, and integrated in
14.3 ms time bins.

We predicted that the EMG signal from
the biceps would show good tuning to final
posture, but that the tuning would differ
from the typical tuning of motor cortex
neurons in two ways. First, the neurons
often were related to movement of more
than one joint, whereas the biceps EMG
should be primarily related to the elbow.
Second, the neurons often preferred
movement toward an intermediate joint
angle, whereas the biceps EMG was ex-
pected to prefer a flexed elbow angle. In
these ways, the muscle signal was expected
to be simpler than the neuronal signals.

As expected, the biceps EMG was larg-
est during flexion of the elbow joint. Fig-
ure 17A shows EMG traces during rota-
tions of the elbow. Flexions of the elbow
were associated with higher EMG activity
than extensions of the elbow. Just as for the
neuronal analysis, we performed a linear
regression of the biceps EMG against joint
angular velocity with eight degrees of joint
motion. The total R 2 value for this regres-
sion was 0.41. Figure 17B shows the individual contributions of
each joint when the covariance with the remaining seven joints
was regressed out. As expected, the elbow joint shows the domi-
nant effect. The three degrees of shoulder rotation show a small
effect, probably because the movement of the shoulder is to a

small degree mechanically coupled to the elbow. The four distal
degrees of freedom show essentially no effect. The overall pattern
shows that the activity of the biceps is related primarily to rota-
tion of the elbow joint.

We then analyzed the biceps EMG using the model of a tuning

Figure 16. Analysis of simulated noisy neurons. A, Simulated direction-tuned neuron tested
on direction, end-point, and end-posture regression models. B, Simulated end-point tuned
neuron tested on the same three models. C, Simulated end-posture tuned neuron tested on the
same three models. D, Simulated neuron with no tuning on the same three models.

Figure 17. EMG results for biceps during naturalistic movements. A, Right, EMG traces during movements involving elbow flexion.
Left, EMG traces during movements involving elbow extension. B, An eight-dimensional regression against joint velocity was performed
and returned an R 2 � 0.41. The unique contribution for each joint, when the contributions of the other seven joints were regressed out,
was calculated. The figure shows the percentage of contribution to the R 2 for each joint. As expected, the elbow joint showed the largest
effect. Joints on x-axis are (in order) shoulder azimuth, shoulder elevation, shoulder external/internal rotation, elbow extension, forearm
pronation, wrist extension, wrist adduction, and grip aperture. DOF, Degrees of freedom.
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to a preferred final posture. Because the biceps EMG is largest
during elbow movements toward flexion, the signal was expected
to be relatively well tuned to final posture, in which the preferred
final posture was a flexed elbow. The R 2 value for this tuning to
final posture was 0.49. The EMG signal was indeed tuned to a
flexed elbow posture. The preferred elbow angle obtained by the
regression fit was 2°, outside the normal mechanical range of the
elbow (�30 –180°). That is, the biceps EMG was on average larger
for movements that terminated in more flexed postures, resulting
in an extrapolated preferred posture more flexed than the arm
could actually go. In contrast, for most neurons, the regression
analysis obtained a preferred final posture within the normal
mechanical range of the elbow. Only one neuron had a preferred
elbow angle outside of that range. The preferred final elbow
angle for the biceps EMG was so extreme that it was highly
significantly smaller than that obtained for the neurons ( p �
10 �8).

These results show, as expected, that the biceps EMG activity
was related primarily to the elbow and was tuned primarily to
flexion, not to movement toward a posture in the normal range of
the arm. In these ways, the pattern of results for the muscle was
simpler and much clearer than the pattern described above for
the neurons in motor cortex. It cannot be ruled out that some of
the neuronal signals studied here are correlated primarily with
muscle activity. Indeed, considerable direct control of muscle
activity seems likely. However, to the extent that each neuron was
related to many joints and to the extent that neurons often pre-
ferred movement of joints to intermediate angles rather than to
extremes, the pattern of results was too complex to be entirely
explained by a simple linear relationship to muscle activity.

Discussion
The present results suggest that the standard tuning properties of
motor cortex neurons described previously in trained tasks are
also present during semi-naturalistic, unstructured arm move-
ments. However, the amount of neuronal variance explained by
standard directional tuning may be less than suspected previ-
ously, at least in monkeys that have not received extensive daily
training on a directional reaching task, whereas the variance ex-
plained by postural tuning may be more. On average, speed tun-
ing accounted for �1% of the total variance, simple direction
tuning for 8%, a more complex version of direction tuning for
13%, tuning to the final position of the hand for 22%, and tuning
to the final posture of the arm for 36%.

Interpretation of R 2

All R 2 values in the present study are below 50%. Do these seem-
ingly low values indicate a weak or invalid result? A high R 2 value
for a particular source of variance will be obtained only if all other
sources of variance are minimized. In the case of speed tuning, it
is possible, by averaging out the variance from other sources, to
obtain an R 2 value that surpasses 90% (see above, Speed tuning
I). However, when all sources of variance are admitted, although
speed tuning remains significant, it explains only �1% of the
variance. In this case, the R 2 value can change for some neurons
from 90 to 1% depending on the manner of the test but still reflect
the same, valid speed-tuning signal.

Tuning to a final multijoint posture of the arm accounted for
the largest share of the neuronal variance: 36%. An incorrect
interpretation might suggest that this model cannot be valid be-
cause it explained far less than 100% of the variance and even less
than 50%. However, the fact that the postural tuning captures
one-third of the variance, in a grab bag with all other sources of

variance present, suggests that it is a major contributor to the
signal.

Presumably the use of the arm for complex, normal behavior
requires the control of numerous variables including hand speed,
joint angle, muscle force, final posture, path curvature, grip size,
the relative timing of arm and grip movement, and others. These
variables are relevant to different extents in different movements.
They are all presumably reflected in motor cortex neuronal activ-
ity. The variance in neuronal activity should be related in some
proportion to each of these control variables, each one capturing
a small part of the total variance. The present findings are consis-
tent with the view that neurons are tuned to many control vari-
ables important in the animal’s repertoire, and that posture is an
especially prominent control variable capturing approximately
one-third of the total variance.

One major caveat is that many of the movement variables are
likely to be correlated with each other. If a neuron contributes to
the control of variable A but variable A is correlated with variable
B, then the neuron may appear on analysis to be tuned to B.
Therefore, our results showing that neurons are tuned to many
parameters must be taken cautiously. It cannot be excluded that
some of the tuning to different movement variables reported here
is a result of correlations among the variables. This difficulty of
correlations among movement variables has been noted before
and has led to some alternative interpretations to direction tun-
ing (Scott and Kalaska, 1995, 1997). Arguably, the correlative
nature of single-neuron experiments has been the main obstacle
to interpreting single-neuron results in motor cortex.

Local direction tuning and global posture tuning
In the now classical paradigm of Georgopoulos et al. (1982,
1986), monkeys perform a center-out task, reaching from a cen-
tral location to surrounding locations. Most neurons are broadly
direction tuned, preferring one direction of reach and firing less
during neighboring directions. Furthermore, when different
starting and ending positions are tested, direction tuning still
predominates (Georgopoulos et al., 1985; Kettner et al., 1988;
Caminiti et al., 1990; Fu et al., 1993). However, the present ex-
periment suggests that, in a more global range of movements, the
neuronal variance is only �8% attributable to this type of direc-
tion tuning. Other types of tuning, such as end-point and end-
posture tuning, explain more of the variance.

These seemingly disparate results are not, however, in contra-
diction. In a center-out task and its variants, the direction of the
hand is typically explored through a full range of angles, yet the
posture of the arm is tested over a narrow range. In most exper-
iments, the hand is limited to a central region of space comprising
�5% of the volume tested here. Because the tuning curves for
posture and hand position are broad, they will drive little of the
neuronal variance if tested over this small range. As a result, when
testing local regions of space with a full range of hand directions,
direction tuning will tend to predominate.

Our results replicate previous findings that the neurons are
locally but not globally direction tuned. The directional tuning
changes when the hand is placed in a new starting position or
when the arm is given a new starting posture (Caminiti et al.,
1990; Scott and Kalaska, 1995, 1997; Sergio and Kalaska, 2003).
The present findings further suggest that the behavior of the neu-
rons over the global movement set may be better described as a
broad tuning to a preferred final posture.

Many of the actions performed by monkeys (and humans)
require placing the arm, including both proximal and distal
joints, in a canonical posture and making smaller adjustments to
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that posture. To a first approximation, the behavior of the arm is
best described as a set of useful postures rather than as a set of
useful directional vectors. For example, manipulating an object
between the hand and the teeth involves a canonical arm posture
including the shoulder in a low elevation, the elbow flexed, the
forearm supinated, the wrist slightly flexed, and the grip closed.
Within this canonical posture, smaller adjustments are made to
each of these joints to manipulate the object at the mouth. An
example from the human motor repertoire is typing: the arm
remains in a canonical posture with the upper arm vertically
downward, the elbow flexed to �90°, the forearm pronated, and
the wrist straight. Superimposed on this relatively stable posture
is a set of smaller directional adjustments. Arguably, in this type
of behavior, the proximal joints require more stabilization than
the distal joints, but all joints whether proximal or distal partici-
pate in the canonical posture and also participate in the finer
directional adjustments around that posture needed to perform
the action. We speculate that so many actions in the primate
repertoire have this architecture of a global posture and local direc-
tional adjustments to that posture that neurons in motor cortex may
have come to reflect that structure in their movement tuning.

A recent study suggests that neurons compensate for a force
load on the hand in a manner that emphasizes either postural
coding or directional coding (Kurtzer et al., 2005). Other recent
work suggests that, in the human, postural coding may be em-
phasized in the right hemisphere in motor cortex and directional
coding may be emphasized in the left hemisphere in motor cor-
tex, although both types of processing are of course represented
in both hemispheres (Bagesteiro and Sainburg, 2002). Exactly
how these results relate to the present study is not yet clear. Most
normal actions require both a postural component and a direc-
tional component, as well as control of other aspects of move-
ment, yet it may be that some actions emphasize postural control
whereas others emphasize directional control.

Much of the literature in motor control asks how the hand is
moved from point A to point B. Is it moved via a postural con-
troller (Rosenbaum et al., 1995; Ghafouri and Feldman, 2001) or
a directional controller? We suggest, however, that almost all
normal behavior requires a much greater range of objectives than
merely a cursor-like movement of the hand from point to point.
Control of posture is not merely a means of moving the hand
around but can be a prominent part of the behavioral task. The
arm configuration provides the correct hand orientation, stabil-
ity along the correct axis required for the task, a maximum of
comfort, and prevention of different parts of the arm from col-
liding with the body or with nearby objects. For example, bring-
ing the hand to the mouth is not merely a matter of translating the
hand, cursor-like, to the mouth; it involves a characteristic whole
posture of the arm. Moreover, in some types of behavior, such as
nudging something with the elbow or flinging up the arm into a
protective posture to block a threat, the position of the hand in
space is relatively unimportant and the posture of the arm be-
comes the primary task requirement. For these reasons, it does
not seem surprising that motor cortex should contain such ro-
bust signals concerning the configuration of the arm or that pos-
tural signals and directional signals should be combined as they
are in the behavior.
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