
195 

Spatial maps for the control of movement 
Michael SA Graziano* and Charles G Gross 

Neurons in the ventral premotor cortex of the monkey encode 

the locations of visual, tactile, auditory and remembered 

stimuli. Some of these neurons encode the locations of 

stimuli with respect to the arm, and may be useful for guiding 

movements of the arm. Others encode the locations of stimuli 

with respect to the head, and may be useful for guiding 

movements of the head. We suggest that a general principle 

of sensory-motor integration is that the space surrounding 

the body is represented in body-part-centered coordinates. 

That is, there are multiple coordinate systems used to guide 

movement, each one attached to a different part of the body. 

This and other recent evidence from both monkeys and 

humans suggest that the formation of spatial maps in the 

brain and the guidance of limb and body movements do not 

proceed in separate stages but are closely integrated in both 

the parietal and frontal lobes. 
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Abbreviations 

AIP anterior intraparietal area 

LIP lateral intraparietal area 

MIP medial intraparietal area 

PMd dorsal premotor area 

PMv ventral premotor area 

VIP ventral intraparietal area 

Introduction 
A scholar sits at her desk and reaches for a pen. Later, 

she turns in her chair, avoids upsetting the tea mug 

with her elbow, and pulls a book from a nearby shelf. 

She scratches her forearm by rubbing it carefully against 

the edge of the desk. At lunch, she holds her sandwich 

and reaches with her mouth toward a dangling piece of 

bologna. Most studies of visuomotor coordination have 

concentrated on how the hand is guided toward a visual 

target; the brain, however, solves a more general problem, 

involving guidance of the hand, elbow, shoulder, head 

and torso during reaching, biting, hitting, nudging and 

avoiding. Neurons in the ventral premotor cortex (PMv) 

have properties that may account for this versatility of 

action. 

In this review, we summarize recent evidence on the 

properties of PMv neurons in the monkey brain and 

how they might help guide movement. We then describe 

how visual information can reach PMv along a sequence 

of cortical areas, including portions of the superior and 

inferior parietal lobe. Finally, we describe evidence from 

brain-damaged and normal subjects showing that similar 

mechanisms exist in humans. 

Body-part-centered coordinates in ventral 
premotor cortex 
The ventral premotor cortex, or area PMv, is located 

in the frontal lobes just posterior to the arcuate sulcus 

and anterior to the primary motor cortex (Figure 1). 

Area PMv approximately matches area F4 of Rizzolatti 

and colleagues [l]. Sensory information can reach PMv 

through projections from the parietal lobe [Z-6], and 

PMv can influence movement through its projections to 

primary motor cortex and the spinal cord [5,7-131. Most 

neurons in PMv respond to tactile stimuli, and about 40% 

also respond to visual stimuli [14’,15,16*,17]. For these 

bimodal cells, the tactile receptive field is located on the 

face, shoulder, arm or upper torso, and the visual receptive 

field extends from the approximate region of the tactile 

receptive field into the immediately adjacent space. 

Figure 2 shows the tactile receptive fields (striped) and 

the associated visual receptive fields for two typical 

bimodal neurons related to the face (Figure Za) and arm 

(Figure Zb). About 20% of the bimodal neurons continue 

to respond to objects in the visual receptive field even after 

the lights are turned out and the object is no longer visible 

[18’]. Such neurons apparently remember the locations of 

nearby objects. Neurons with a tactile response on the side 

and back of the head often respond to auditory stimuli 

near the head ([18-l; MSA Graziano, LA Jin, CG Gross, 

Sot Neurosci Abstr 1997, 232066). If the source is more 

than about half a meter from the head, these neurons do 

not respond, regardless of the intensity of the sound. This 

wide range of multimodal neurons in PMv represents the 

space immediately surrounding the body through touch, 

audition, vision and memory. 

For almost all bimodal cells with a tactile receptive 

field on the arm, the visual receptive field moves with 

the arm when the arm is placed in different positions 

[15,16*]. In contrast, when the eyes move, the visual 

receptive field does not move, but remains anchored to 

the arm [14*,15,16*,19*,20,‘21]. Thus, these cells encode 

the locations of nearby visual stimuli with respect to the 

arm, that is, in arm-centered coordinates. Such information 

can be used to guide the arm toward or away from nearby 

objects. Some bimodal neurons have tactile receptive 

fields restricted to the forearm or upper arm, and the 

adjacent visual receptive fields would be useful for guiding 

those portions of the arm, such as for nudging an object 

or reaching around an obstacle. A high percentage of 

arm-related bimodal neurons in PMv are active during 
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Figure 1 
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Visuomotor pathways of the monkey brain. (a) Lateral view of macaque cerebral cortex showing some of the cortical areas involved in the 

representation of visual space and visuomotor coordination. Major posterior sulci have been opened up to show the burred cortex (shaded in 

gray). (b) Some of the neuronal pathways by which visual information entering the eye might guide movement of the eyes and limbs. Areas 

shown in black are in the posterior parietal lobe. FEF, frontal eye field; LGN, lateral geniculate nucleus; MDP, medial dorsal parietal area; 

MST, medial superior temporal area; MT, middle temporal area; SC, superior colliculus; SEF, supplementary eye field; SMA, supplementary motor 

area; Sp. cord, spinal cord; STP, superior temporal polysensory area; V, visual area. 

movements of the arm, and electrical stimulation of these neurons respond during specific voluntary movements of 

neurons causes arm movements [l]. the head [16*]. 

Similarly, for most bimodal cells with a tactile receptive 

field on the face, when the head is rotated, the visual 

receptive field moves with the head [16’]. When the eyes 

move, the visual receptive fields do not move, but remain 

anchored to the head [14’,15,16’,19’,20,21]. These visual 

receptive fields, therefore, encode the locations of nearby 

stimuli relative to the head in head-centered coordinates, 

and would be useful for guiding the head toward or 

away from nearby stimuli, such as for biting, kissing or 

flinching. More than half of these head-related bimodal 

We have suggested that sensory receptive fields anchored 

to different parts of the body, that is, in body-part- 

centered coordinates, provide a general mechanism for 

sensory-motor integration [15,2X?*]. Not only movements 

of the arm and head, but also movements of the eye appear 

to be organized in body-part-centered coordinates. In arcas 

of the brain that control eye movements, the visual, 

auditory and even tactile receptive fields move when the 

eye moves, representing the locations of saccade targets 

in eye-centered coordinates [2~,24,25’,26,27’,2~~,~9,30’). 
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Figure 2 
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Receptive fields of two bimodal, visual-tactile neurons in PMv. 

(a) The tactile receptive field (striped) IS on the snout, mostly 

contralateral to the recording electrode (indicated by the arrowhead) 

but extends partially onto the ipsllateral side of the face. The visual 

receptive field (boxed) is contralateral and confined to a region of 

space within about 10 cm of the tactile receptive field. (b) The tactile 

receptive field for this neuron is on the hand and forearm contralateral 

to the recording electrode (indicated by the black dot), and the visual 

receptive field (outlined) surrounds the tactile receptive field. 

We predict that movements of any body part are 

guided by receptive fields anchored to that body part. 

The advantage of body-part-centered coordinates is that 

sensory information about the location of the carget can 

serve as a motor signal, guiding movement of the body 

part toward or away from the target. 

How are body-part-centered coordinates computed by 

neurons? Specifically, how does the brain construct a 

visual receptive field that is anchored to the body surface 

instead of to the retina? Such neurons require both visual 

information about the position of the stimulus on the 

retina and proprioceptive information about the position of 

the body parts. In the next section, we discuss the inputs 

to premomr cortex and the computational steps by which 

body-part-centered coordinates might bc formed. 

Pathways from parietal cortex to premotor 
cortex 
I:igurc lb shows some of the pathways by which visu- 

ospatlal information might reach PMv and other premocor 

and motor areas. Regions in the par&al lobe (filled 

boxes) reccivc convergent visual, tactile, proprioceptive 

and cffercnce copy input [31*.32-341 and, therefore, could 

scrvc 3s ;I source: ot‘ information for the bimodal neurons 

in f’.llv. Neurons in area 7a and the lateral intrapariecal 

area (LIf’), for example, combine visual responses with 

proprioccptive information about the position of the 

eyes and the head [35-371. Andersen and collcagues 

[31-l have argued that these neurons may encode the 

locations of objects in head-centered, trunk-centered 

or, ~)os~i!,l>, \\.orld-centered space. while Goldberg and 

colleagues have argued that the same neurons encode 

space in eye-centered coordinates (see [24,38*]). Our 

view is that these parietal neurons do not form any 

single spatial coordinate system; rather they carry the raw 

information necessary for other brain areas to construct 

spatial coordinate systems [U’]. Neural network models 

demonstrate that the neuronal outputs from areas 7a 

and LIP could indeed be used as the basis of the 

body-part-centered receptive fields found in PMv [39*,40]. 

Area 7a and LIP project to the ventral intraparietal 

area (VIP) and area 7b, which in turn project to PMv 

([2,3,5,6,41]; M Matelli, G Luppino, A Murata, H Sakata, 

Sot Neurosci Abstr 1994, 20:984). The neuron properties 

in VIP and 7b are somewhat similar to those in PMv. 

As in Phlv, a high percentage of neurons in VIP and 7b 

are bimodal, visual and tactile, and the visual receptive 

fields are generally restricted to the space near the body 

[42Z49]. However, the visual receptive fields are not as 

closely linked to the body surface as in PMv. In 7b, 

for bimodal cells with a tactile response on the arm, 

the visual receptive fields do not move when the arm 

is moved ([SO]; MSA Graziano, T Fernandez, CG Gross, 

Sot Neurosci Abstr 1996, 22:398). In VIP, only a small 

proportion of the visual receptive fields do not move when 

the eyes move [Sl’]. These two areas would therefore 

seem to form a processing stage immediately before the 

body-part-centered visual receptive fields in PMv. 

Another route by which spatial information might reach 

premotor cortex and guide movement is through parietal 

areas PO, MDP, medial intraparietal (MIP) and 7m. 

These areas receive visual, proprioceptive and tactile 

input and project to the frontal lobe, mainly to the 

supplementary motor area and the dorsal premotor area 

(PMd) [52,53*,54*]. Caminiti and colleagues [52,53*] have 

suggested that this anatomical pathway underlies spatially 

guided reaching. Neurons in all of these areas respond 

during reaches of the contralateral arm, and in PMd 

the proportion is close to 100% [54*,.55]. However, PMd 

notably lacks the visual receptive fields in the space near 

the body that are so common in PMv. Instead, the neurons 

respond to arbitrary instructional signals, such as colored 

spots of light, but only when the monkey is trained to 

move in response to those stimuli [56,57]. One suggestion, 

therefore, is that PMd helps to perform complex and 

arbitrary sensory-motor mappings, while PRfv coordinates 

more spatially directed movements [54*,58,59]. Another 

possibility is that PMd is specific for projecting the hand 

toward a target, while Phlv controls a greater range of 

spatially guided movements involving the arms, chest and 

head. 

In the traditional view, the parietal lobe contains a 

general-purpose map of visual space, and this spatial 

information is then relayed to the motor areas of the 

frontal lobe to guide behavior. However, the planning and 

coordination of movement appears to begin in the parietal 
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lobe itself. Not only are reaching movements represented 

in parietal areas 7m and MIP, but eye movements are 

represented in LIP [60*,61*] and grasping movements in 

the anterior intraparietal area (AIP) [62,63*]. The motor 

functions of 7b and VIP, the main parietal sources of 

input to PMv, have not yet been systematically studied, 

but there is some indication that 7b may be involved in 

control of arm movements and VIP in control of the head 

and mouth [46,47]. These motor-specific parietal areas 

project to corresponding specific premotor areas in the 

frontal lobe (see Figure 1). We suggest that the premotor 

areas are the final stations where spatial maps for guiding 

movement are constructed. That is, motor processing and 

spatial processing overlap extensively, and the highest 

levels of spatial processing lie quite deep within the motor 

system. This integration of logically separable functions 

is not unusual and appears to be a common property 

of neuronal systems. For example, the inferior temporal 

cortex processes sensory information about shape and 

color, but is equally involved in storage of the same 

types of stimulus features [64]. Although psychology has 

traditionally divided the mind into separate functions, 

such as perception, memory, spatial representation and 

motor control, these logical categories do not appear to be 

biologically valid and often cannot be found in separate 

locations in the brain. 

Multiple spatial coordinate frames in humans 
The view of the spatial control of movement described 

above is based largely on single-neuron evidence from the 

monkey. Is there evidence that similar mechanisms exist 

in humans? 

People with lesions of the parietal lobe have severe 

visuospatial and visuomotor impairments. They show 

deficits in reaching, fixating a target, remembering routes, 

judging spatial relations, localizing a touch on the body 

and attending to the contralateral side of space [65-711. 

Visuospatial deficits have also been observed after frontal 

lesions [72*,73]. One major goal of current neuropsycho- 

logical research is to determine the spatial coordinate 

system that is disrupted in these patients. For patients 

who neglect half of space, do they neglect the space 

to one side of the retina, the head, the body, the room 

in which they are sitting or the object to which they 

are attending? According to traditional notions of parietal 

function, the neglect should reflect damage to a single, 

supramodal map of space anchored to the body, either to 

the head or the trunk. According to the notion of multiple 

coordinate systems described above, neglect should vary 

depending on the specific portions of parietal or frontal 

cortex that are damaged and should reflect a complicated 

mixture of different coordinate frames. The evidence 

clearly supports this second view. Different patients and 

different tests on the same patient can demonstrate spatial 

deficits that are centered on the eye, the body or the 

attended object [71]. Neglect can involve primarily the 

space within reaching distance or more distant space 

[74-771. Distracters presented in the tactile modality 

can exacerbate neglect symptoms in the visual modality 

and vice versa, demonstrating a close link between the 

representation of visual space near the body and tactile 

space on the body [78’]. 

The position of the arm can also influence the symptoms 

of neglect. In one experiment involving cross-modal 

extinction [79*], subjects were asked to detect a tactile 

stimulus applied to the hand contralateral to the lesion. 

When a visual stimulus was presented near the other 

hand, the subjects no longer reported the tactile stimulus. 

That is, the tactile stimulus had been extinguished by 

the competing visual stimulus. The critical region of 

visual space, in which the competing stimulus was most 

effective, surrounded the ipsilesional hand and moved if 

the hand was moved. This result can be explained by 

hand-centered visual receptive fields, such as we found in 

monkey PMv [ 16’1. 

Normal subjects also show evidence of a hand-centered 

coordinate system. In an experiment by Tipper et al. 

[80], when subjects reached for a target while avoiding 

a distracting stimulus, the reaction times were elevated 

when the distractor lay roughly between the hand and 

the target. Again, the critical region of visual space, in 

which the distractor had maximum effect, was anchored to 

the hand and moved if the hand was moved. In another 

experiment, Driver and Spence (see their review, in this 

issue, pp 245-253) found that a touch on the hand could 

enhance processing of visual stimuli in the space near the 

hand. When the hand was placed in different locations, 

the enhanced region of visual space remained anchored 

to the hand. These results demonstrate the existence 

of body-part-centered coordinate systems in the human 

brain. 

Conclusions 
To understand and represent the space around our bodies, 

we must put together vision, touch and proprioception, 

as well as vestibular sensation and audition. These 

signals are initially combined in the parietal lobe. The 

parietal areas also appear to begin the process of planning 

and coordinating movements. Different parietal areas are 

specialized for different motor outputs, such as those 

for eye, arm and hand movements. These parietal areas 

project to premotor areas in the frontal lobe, in which 

the processing of space and movement continues. In 

particular, area PMv appears to represent the space 

immediately surrounding the face, arms and upper torso in 

body-part-centered coordinates. These body-part-centered 

coordinates can provide a general mechanism for guiding 

movements of the limbs and head toward, away from or 

around the everyday objects that surround us. 
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