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Motor cortex neurons in the monkey brain were tested with a
diverse and naturalistic arm movement set. Over this global set of
movements, the neurons showed a limited but significant degree
of tuning to the multijoint posture attained by the arm at the end
of each movement. Further supporting the hypothesis that the
neurons are partially tuned to end posture, the postures preferred
by the neurons significantly matched the postures evoked by
electrical stimulation of the same cortical sites. However, much of
the variance in neuronal activity remained unexplained even by
the end-posture model, and thus other variables must have con-
tributed to the response profile of the neurons. One possibility is
that motor cortex neurons become tuned to the wide variety of
movement parameters that are relevant to the animal’s normal
behavioral repertoire, and, therefore, any one parameter accounts
for only a limited amount of neuronal variance.

direction tuning � microstimulation � primary motor cortex

How do neurons in motor cortex encode movement? Geor-
gopoulos and colleagues (1, 2) studied monkeys performing

a reaching task and found that each neuron was tuned to a
preferred direction of reach. Subsequent studies suggested that
direction tuning is only one part of a more complex tuning
function. For most neurons, when the initial position of the hand
was shifted to different parts of the workspace, or when the
posture of the arm was altered, the preferred direction changed
(3–5). Thus, a single preferred direction could not account for
the behavior of the neurons, and other variables such as joint
angle and arm posture must have contributed. Neural correlates
have been found for a range of variables including force, static
hand position, distance, speed, curvature of hand path, joint
angle, and muscle activity (6–17). It seems increasingly likely
that the neurons are tuned to combinations of movement
parameters that are of use to the animal.

One limitation of these previous experiments in exploring the
complexity of neuronal tuning is that they typically used a
restricted, simplified movement set, such as a set of reach
directions, a set of directions of isometric force on a lever, a set
of hand movements confined to a 2D plane, or a directional
movement of the wrist. This restriction on the movement set
limits the kinds of neuronal responses and tuning functions that
can be obtained. Models of neuronal tuning that fit the data well
in a restricted condition may not account for much of the
neuronal behavior in a more naturalistic condition.

Here we examined neuronal activity in primary motor cortex
of two monkeys while simultaneously measuring eight degrees of
freedom of the arm. The monkey moved its limb freely, reaching
for pieces of fruit, manipulating objects, putting items in its
mouth, scratching and grooming itself, and engaging in other
spontaneous behavior. After recording neuronal activity during
this varied movement set, we tested the extent to which the firing
of each neuron could be explained by (i) a preferred direction of
the hand through space, (ii) a preferred end point of the hand
in space, and (iii) a preferred, multijoint end posture of the arm.

Electrical stimulation of motor cortex can cause the arm to
move to a specific, complex posture typically involving many
joints (18–20). We therefore also compared the response prop-

erties of neurons to the postures evoked by stimulation of the
same cortical site to determine whether there was a significant
match.

Results
Direction Tuning. Fig. 1A shows a front view of a set of 683 hand
movements made by the monkey over 15 min. As described in
greater detail in the supporting information, which is published
on the PNAS web site, movements were individuated on the basis
of the distinctive rising and falling speed profile of the hand. As
shown in Fig. 1 A, the movements densely sampled a large
portion of the space around the monkey. Details of the degree
of curvature of movements, mean length, mean speed, range of
different directions, and extent of the workspace covered are
given in the supporting information.

During these movements we recorded from a neuron in
primary motor cortex, and a mean firing rate for the neuron was
computed for each movement. As detailed in the supporting
information, the neuron was located in the arm and hand
representation in primary motor cortex, in which most neurons
(89%) responded significantly in relation to simple movement of
the shoulder or elbow.

In the preferred direction model (1, 2) a neuron fires most
during hand movement in a particular, preferred direction. The
firing rate is proportional to the cosine of the angle between the
actual hand direction and the preferred hand direction. A
regression analysis (see supporting information) was used to
obtain the preferred direction that best fit the neuronal data and
to obtain an R2 value indicating how much of the variance in
neuronal activity could be attributed to the cosine tuning to the
preferred direction. Fig. 1B shows the cosine fit to the data for
this example neuron. The R2 value is 0.03, indicating that the
direction tuning model accounted for almost none of the vari-
ance in neuronal activity. Sixty-three neurons were tested in this
fashion. The black bars in Fig. 2A show the distribution of R2

values for all neurons. Almost all values were �0.1. The direction
tuning model explained almost none of the variance in the
sample of neurons. These results do not show that neurons in
motor cortex are not direction-tuned. Rather, they show that,
during free movement, when many movement parameters pre-
sumably contribute to the activity of neurons, direction tuning
makes a vanishingly small contribution.

Neurons in motor cortex have a consistent preferred direction
when tested on a center-out task (1, 2). Changing the start
position of the hand or the start posture of the arm, however, can
alter the preferred direction (3–5). In our study, the lack of a
clear preferred direction might have resulted from our use of a
diverse movement set including a variety of start positions. To
test this hypothesis we analyzed a restricted subset of the
movements that more closely resembled a center-out task. Fig.
1C shows selected movements from Fig. 1 A that originated
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within a 5-cm radius sphere and that were between 6 and 15 cm
in length. Fig. 1D shows the cosine tuning of the example neuron
over this subset. The cosine fit has an R2 value of 0.40 (P �
0.0001). Thus, over the limited movement set, a significant
component of direction tuning can be extracted, accounting for
�40% of the neuron’s variance.

As shown in Fig. 2 A for the population of neurons, the limited
movement set had a significantly higher distribution of R2 values
than the unrestricted movement set (F � 192.00; P � 0.0001).
Tuning to a single preferred direction can therefore account for
much of the behavior of the neurons over a restricted movement
set, but not over a complete movement set. The neurons
appeared to be locally but not globally direction-tuned.

End-Point Tuning. What tuning function, if any, might account for a
cell’s global behavior across a full range of movements? If a cell is
end-point-tuned, then it should fire most during movements that
end with the hand near a preferred point in space. It should fire less
during movements that end with the hand far from that preferred
point. To test for end-point tuning, we modeled the firing rate of the
neuron as a Gaussian function of end point, in which the Gaussian
was peaked at a preferred spatial location (see supporting infor-
mation). For each neuron, we obtained an R2 value indicating how
well this end-point model fit the neuronal data. Fig. 2B shows the
distribution of R2 values for the population of neurons. The R2

values were slightly higher for the preferred end-point model than
for the preferred direction model. However, neither model ac-
counted for much of the variance. For more than half of the
neurons, the R2 value was �0.1.

End-Posture Tuning. Electrical stimulation of sites in motor cortex
can evoke movement of the arm to a specific final joint config-

uration or posture (18–20). We therefore tested whether the
neurons were tuned to the end posture of a movement. Eight
degrees of freedom of the arm were monitored, including grip
aperture and seven joint angles. These degrees of freedom define
an 8D posture space. We modeled neuronal firing rate as a
Gaussian surface in 8D space whose peak corresponds to the
preferred end posture. Movements that terminate at a posture
near the peak of the Gaussian should be associated with a high
neuronal firing rate, and movements that terminate at a posture
far from the peak of the Gaussian should be associated with a low
neuronal firing rate. For each neuron, we obtained an R2 value
indicating how well this model fit the neuronal data. The
distribution of R2 values across the population of neurons was
significantly higher for the end-posture model than for the
end-point model or the direction model (see Fig. 2B; F � 63.71;
P � 0.0001). However, much of the variance remained unex-
plained even by the end-posture model. These results therefore
do not show that neurons in motor cortex are primarily end-
posture-tuned. Rather, they show that, during free movement,
when many movement parameters presumably contribute to the
activity of neurons, end-posture tuning makes a significant
contribution. It is important to note that even a relatively small
R2 value can represent a statistically significant contribution to
the total but suggests that other factors also contribute.

In a second variant to end-posture tuning, in addition to
considering the final posture of each movement, we considered
the trajectory of the movement through 8D posture space. In this
posture-plus-trajectory model, if the movement is aimed directly
at the preferred posture, the neuron should fire more, and if the
movement is aimed away from the preferred posture, the neuron
should fire less, with firing rate proportional to the cosine of the

Fig. 1. Example of a motor cortex neuron that is locally but not globally direction tuned. (A) Front view of 683 hand movements made during 15 min. Each
trail of dots represents one movement measured at 14.3-ms intervals. The monkey drawing shows the approximate scale and location of the animal. (B) Firing
rate of the neuron during each movement vs. angular deviation (��) between movement vector and preferred vector. Fit line is cosine fit. R2 � 0.03; P � 0.05.
(C) Seventy-three selected movements that originated within a 5-cm radius sphere and were between 6 and 15 cm in length. (D) Direction tuning over the limited
movement set. R2 � 0.40; P � 0.0001.
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angular error (see supporting information). Using this direc-
tional factor as an additional regressor, we obtained R2 values
that were slightly higher than for the end-posture model alone.
Thus, of the models of neuronal tuning tested here, the one that
accounted for the largest fraction of neuronal behavior over the
global range of movement was an end-posture model in which
each neuron fired most during movements that (i) were aimed
toward the preferred posture and (ii) terminated near the
preferred posture.

The different models of neuronal tuning involved different
analysis steps and different numbers of regressors. One possi-
bility is that models with more regressors might be inherently
able to extract higher R2 values, regardless of the actual manner
in which the neurons are tuned. We addressed this concern in
three ways. First, and most directly, we used an R2 value that was
corrected for the number of regressors (21). In theory this
method corrects for the potential statistical bias.

Second, we analyzed a randomized data set using the same
models. The data set included the same movements, but the
firing rates assigned to the movements were randomized. Will
the models with a greater number of regressors be able to extract
higher R2 values from this noise, thus demonstrating that the
number of regressors per se was a significant factor in the results?
As shown in Fig. 2C, the R2 values were near zero and the
different models were not significantly different from each other
(F � 0.92; P � 0.43).

Third, we created artificial neurons that were tuned to a
specific direction of the hand, to a specific final location of the
hand, or to a specific final posture of the arm. The data for these
artificial neurons contained an actual, recorded movement set,
but the firing rate of each neuron was artificially generated
according to the three fitting functions, with randomized noise
added. An artificial direction-tuned neuron is expected to show
a high R2 value when tested on a direction-tuned model. But will
the end-point model and the end-posture model, with their
greater number of regressors, extract an even higher R2 value
from the artificial direction-tuned neuron? As detailed in the

supporting information, an artificial neuron that was direction-
tuned showed a high R2 value only when tested on the directional
model and showed a near zero R2 value when tested on the
end-point or end-posture models. Similarly, an artificial neuron
that was end-point-tuned and an artificial neuron that was
end-posture-tuned showed high R2 values only when tested on
their appropriate regression models. In this test on the artificial
neurons, the analysis technique correctly identified each neu-
ron’s tuning function. In particular, the models that had greater
numbers of regressors did not simply extract higher R2 values
from all neurons regardless of their tuning, but rather extracted
high R2 values from neurons appropriately tuned to the model
being tested.

Comparison Between Neurons and Stimulation. Fig. 3A shows data
from an example neuron. First the end-posture tuning was found
by using the regression analysis described above. This analysis
obtained a Gaussian surface in 8D posture space for which the
peak of the Gaussian corresponded to the neuron’s preferred
posture. In this graph, the x axis represents the distance in
posture space between the final posture of each movement and
the preferred posture of the neuron. It is important to note that
this distance is not the distance of the hand from a preferred
location in space, but rather the distance of the arm from a
preferred configuration in posture space. Thus, the units cannot
be in Cartesian centimeters. Instead, we have expressed the units
in standard deviations of the Gaussian fitting function. In this
fashion, all eight dimensions of posture space can be expressed
in the same units, and a 1D graph can be presented. The
advantage of the 1D graph is that it shows the Gaussian fit to the
data: on average, movements that terminated near the preferred
posture (within a standard deviation of the peak of the Gaussian)
had higher firing rates, and movements that terminated progres-
sively farther from the preferred posture had progressively lower
firing rates. Approximately 40% of this neuron’s variance was
attributable to the Gaussian tuning to the preferred posture

Fig. 2. Group data comparing different models of neuronal tuning. (A) Direction tuning on a complete movement set (global) resulted in low R2 values for
most neurons; direction tuning on a limited movement set (local) resulted in significantly higher R2 values (ANOVA, F � 192.00, P � 0.0001). (B) Comparison of
four models tested on the complete movement set. The four distributions of R2 values are significantly different (ANOVA, F � 63.71, P � 0.0001). (C) Same four
models as in B but applied to randomized data. The four distributions of R2 values are not significantly different (F � 0.92; P � 0.43).
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(R2 � 0.38; P � 0.0001). (Additional group data on neuronal
tuning to end posture are given in the supporting information.)

After recording from this neuron, before withdrawing the
electrode, we electrically stimulated the same site in cortex with
a 500-ms train of biphasic pulses (0.2 ms per phase, negative
phase leading, 200 Hz, 50 �A), and the arm moved to a final
posture. Such stimulation-evoked postures were detailed in a
previous study (20). In the present example, data were collected
from 30 stimulation trials, and the mean final posture was
obtained. The red vertical line in Fig. 3A shows the location of
this stimulation-evoked posture relative to the neuron’s pre-
ferred posture. The stimulation-evoked posture was near the
peak of the neuron’s Gaussian tuning function, 0.4 SD away from
the neuron’s preferred posture.

The postures evoked at all other cortical sites tested are also

shown on the same graph as vertical black lines. They are all
farther from the neuron’s preferred posture (�1 SD away from
the preferred posture). Thus, the neuron’s preferred posture
matched best to the posture obtained on stimulation of the same
cortical site and matched less well to postures obtained on
stimulation of all other sites. This result shows a specific corre-
spondence between the properties of the neuron and the results
of stimulating the same site in cortex.

To parameterize this result, we ranked the concordant stim-
ulation site (stimulation site at the same cortical location as the
neuron) in comparison to the discordant stimulation sites (stim-
ulation sites at different cortical locations from the neuron) in
terms of how closely they matched the preferred posture of the
neuron. For the example neuron in Fig. 3A, the concordant
stimulation site ranked first, in the 90th-to-100th percentile
range. For each neuron, we obtained a percentile in this fashion.
If there was no overall match between neuron properties and
stimulation results, then the percentiles should be randomly
distributed between 0 and 100. If there was a match between
neuron properties and stimulation results, then the percentiles
should be skewed to the high end. As shown in the population
data in Fig. 3B, the percentiles are not randomly distributed.
They are skewed to the high end, with the distribution signifi-
cantly above the 50th percentile (binomial test, P � 0.0001).
Indeed, half of the neurons are above the 80th percentile.

These results indicate that there is a significant degree of
match between the postures preferred by neurons as determined
by the regression analysis and the postures evoked by electrical
stimulation of the same sites in cortex. However, the match is not
absolute, with neurons showing a range of other percentiles.

Discussion
Contribution of Different Types of Tuning to Overall Variance. In
many experiments on motor cortex neurons, a movement set is
used in which the direction of the hand in space is varied
systematically among conditions (1, 2, 7–9). The speed and
curvature of the reach and posture of the arm may vary naturally
from trial to trial, but this variability is small in a trained monkey
making stereotyped movements. Thus, the variance in neuronal
firing rate can be ascribed mainly to the direction of the hand in
space. Regression analysis can result in R2 values that are �0.5
and sometimes as high as 0.9 (11). Such experiments ask whether
direction tuning is statistically reliable when isolated. Other
experiments have asked whether speed tuning (11), distance
tuning (9), or hand position tuning (6) are statistically reliable
when isolated.

The present experiment addressed a fundamentally different
question. Given the ‘‘free movement’’ of the arm, in which many
movement parameters are at play in a more naturalistic fashion,
how much of the total neuronal variance can be attributed to
direction tuning, tuning for a preferred hand location in space,
or tuning for a preferred multijoint arm posture?

We found that direction tuning generally accounted for �10%
of the variance in neuronal activity over the global movement set.
Tuning to a preferred location of the hand in space also
accounted for little of the variance. Tuning to a preferred
posture of the arm accounted for significantly more of the
variance. Because the postures preferred by the neurons showed
a significant match to the postures evoked by electrical stimu-
lation, the study provides evidence that neuronal tuning to final
posture exists and plays a role in the control of movement.

However, the results also indicate that posture tuning is only
one contributing source of variance in neuronal activity. The
remainder of the variance is likely to be caused by a combination
of movement and contextual variables such as hand speed (11),
curvature of hand path (12), distance of movement (9), force (8,
15), and probably other variables.

Fig. 3. Comparison of neuronal tuning and stimulation-evoked postures. (A)
Data from an example neuron. The preferred final posture was determined by
regression analysis. The final posture of each movement was compared to the
preferred posture. The distance between them was calculated in 8D posture
space. Distance was measured in units of standard deviations of the Gaussian
tuning function to express all eight dimensions in posture space in equivalent
units. This distance is plotted on the x axis, and firing rate during the move-
ment is plotted on the y axis. The data fit the Gaussian tuning function with
an R2 value of 0.38 (P � 0.0001). Electrical stimulation of the same cortical site
evoked a final posture. The mean stimulation-evoked posture is plotted (red
vertical line) and was near the preferred posture of the neuron. The mean
stimulation-evoked postures from other cortical sites (black vertical bars) were
farther from the preferred posture of this neuron. (B) For each neuron a
percentile was computed indicating how closely the neuron’s preferred pos-
ture matched the posture evoked by stimulation of the same cortical site as
compared to stimulation of other cortical sites. This distribution is not uni-
form; it is significantly greater than 50% (binomial test, P � 0.0001).
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Local vs. Global Direction Tuning. We found significant direction
tuning over a limited movement set. This limited set resembled
the more typically studied center-out paradigm in that the
movements began from a central location and radiated outward
in all directions for a limited distance. This finding of a more
consistent direction tuning for the local movement set than for
the global movement set is in agreement with experiments
showing that a neuron’s preferred direction changes when the
starting position and posture of the arm are changed (3–5). In
such experiments, the preferred direction rotates when the
starting configuration of the arm is changed, and this alteration
in preferred direction occurs in a direction and by an amount that
are idiosyncratic and different from one starting configuration of
the arm to the next and from one neuron to the next. A
population average suggested that the preferred directions tend
to rotate partially with the shoulder joint (3), but at the single
neuron level the change in preferred direction is variable. Such
results indicate that a neuron cannot be characterized by a single
preferred direction. Our results are consistent with these pre-
vious findings, suggesting that cells are tuned to a preferred
direction mainly locally and that a single preferred direction does
not apply globally.

Distinction Between Posture and Hand Position. Previous studies
examined neuronal activity when the hand moved to a single final
position from multiple starting positions or when the hand
applied isometric force toward particular locations in space (3,
5, 7). These studies did not find neuronal tuning to a goal hand
position. It is worth noting that these studies generally looked at
population averages. It is possible that motor cortex contains
some neurons with some degree of tuning to goal hand positions
that is lost in the population average. However, the results
consistently show that tuning to a final hand position is at least
not a prominent influence.

In the present study we tested whether neurons were tuned to
a particular final hand position in space. The R2 values were
typically �0.1, indicating little tuning for goal hand positions.
These results are consistent with previous work.

In our previous stimulation experiments (18–20) we found
that electrical stimulation of a site in cortex tended to drive the
hand to a specific final location regardless of starting location.
This effect of stimulation at first appears to be at odds with the
neuronal data. However, it is crucial to recognize the difference
between arm posture and hand position. For example, upon
stimulation of some sites the hand moved to the mouth and the
mouth opened. Yet the stimulation did not merely specify a hand
position; it specified an arm posture. There are many possible
arm postures consistent with a hand location near the mouth, but
the stimulation evoked a posture in which the elbow was in lower
space, the shoulder was slightly internally rotated, the forearm
was supinated, the wrist was straight, and the grip aperture was
closed. This posture resembled the monkey’s natural feeding
posture. Are neurons in motor cortex tuned to complex postures
of the arm? The present study shows that there is a significant
degree of tuning to the final posture of a movement and that the
postures preferred by neurons show a significant match to the
postures obtained upon stimulation.

If neurons in motor cortex are tuned to a preferred posture,
then why does this tuning not manifest itself in studies that test
hand location in space? The arm contains so many degrees of
joint rotation that posture space and hand position space do not
correspond in a simple fashion. Note that two very different
postures might involve similar hand locations in space and that
two very different hand locations in space might involve similar
postures that differ from each other only in the angle of one joint.
Thus, it is unlikely that posture coding would be detected in
studies that examine hand position and movement. As described
in the supporting information, we constructed ‘‘artificial’’ neu-

rons tuned to specific postures. These neurons, when tested for
tuning to a hand location in space, resulted in low R2 values and
no clear preference for hand location. Yet each of these artificial
neurons was tuned to a posture, and the preferred posture was
necessarily associated with a hand position in space. These
results on the artificial neurons show particularly clearly how a
posture-tuned neuron would go undetected in experiments that
measure only hand position or hand movement. The entire
configuration of the arm must be measured to detect posture
tuning.

Partial Match Between Neurons and Stimulation. Our results show a
significant degree of match between the postures preferred by
neurons and postures evoked by electrical stimulation of the
same cortical site. Yet the match is not absolute. The mismatch
may have a variety of sources. First, many neurons in motor
cortex may simply not be posture-tuned. Indeed, some of the
neurons showed low R2 values for posture tuning, �0.2. Second,
even the neurons that are posture-tuned are noisy, and thus the
estimate of their preferred posture may not be precise. Third,
stimulation directly activates a ball of neighboring neurons that
might have a diversity of properties; thus, stimulation may cause
an averaging or summing of these properties. These sources of
error are likely to have diluted the match between neuronal
properties and stimulation effects.

It has long been known that stimulation is helpful in discov-
ering basic motor or sensory properties encoded in cortex,
especially because the technique is causal rather than correla-
tional (22–26). But because of the limitations of the technique,
especially the direct stimulation of nearby neurons with diverse
properties, the strongest evidence is always provided by a
convergence of different techniques on a similar answer. In the
present case a convergence of stimulation effects and single-
neuron properties strongly supports the hypothesis that motor
cortex neurons control movement partly by specifying a final
posture.

Partial Coding of Final Posture. Motor cortex neurons correlate
with many movement parameters (1–17). It seems increasingly
clear that tuning to a single movement parameter is too simple
a model to account for the behavior of these neurons. Rather,
the neurons appear to be tuned in a complex, multidimensional
space, and some degree of tuning to specific parameters can be
extracted from that multidimensional tuning profile. Given
different tasks and different movement sets, different types of
tuning are obtained.

In the past we suggested that the postures evoked by electrical
stimulation of motor cortex might reflect a fundamentally
posture-based strategy for movement control (19). Such posture-
based control strategies, in which movements are coordinated by
first determining the desired final posture and then planning the
trajectory to that posture, have been proposed by many others
(27–30). However, given the diversity of movements in the
animal’s repertoire, it seems unlikely that the motor cortex uses
one control strategy. The present results suggest that, although
motor cortex neurons include some degree of posture tuning,
this type of tuning does not account for the full range of neuronal
behavior, and other variables must be at play. The results are
more consistent with the hypothesis that a posture-based control
strategy is one part of a more diverse and complex movement
control system. For example, a recent study has identified what
may be partially segregated neuronal populations for maintain-
ing a steady arm posture and controlling a directional arm
movement (31).

Recently it has been proposed that the motor system uses an
‘‘optimal control’’ method (32, 33). In this hypothesis the system
optimizes the control of task-relevant parameters, often leaving
other parameters to vary. In one type of task, the relevant
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parameter may be hand direction; in another task, the relevant
parameter may be quite different, e.g., the final striking position
of the head of a hammer. One suggestion, therefore, is that there
is no single, preferred parameter (such as direction, speed, force,
or end point) used for all tasks, but instead the parameters being
specified by the optimal control strategy depend on the task
being performed. Studies involving a directional reaching task
might tend to reveal a directional control strategy, whereas
studies involving more posture-based tasks might tend to reveal
a more postural control strategy. We suggest that the reason why
neurons in motor cortex show some degree of end-posture
coding is that monkeys normally spend a high proportion of time
maintaining specific, complex arm postures to stabilize and
orient the hand during hand actions (34). In this hypothesis, the
neuronal tuning reflects common aspects of the monkey’s be-
havioral repertoire.

Methods
All procedures were approved by the Princeton University
Institutional Animal Care and Use Committee and the attendant
veterinarian and were in accordance with National Institutes of
Health and U.S. Department of Agriculture guidelines. We
studied two adult male Macaca fascicularis. Detailed methods
are presented in the supporting information.

A varnish-coated tungsten microelectrode (Frederick Haer,
impedance 0.5–2 M�) was used to obtain neural signals that
were amplified (A-M Systems amplifier, model 1800) filtered
(300–5,000 Hz), and recorded at 25,000 Hz. An offline spike-
sorting algorithm was used to assign spikes to individual neurons.
Typically one to three neurons could be reliably isolated on the
electrode at one time.

At each cortical site, after recording neuronal activity, we
tested the effect of electrical stimulation (Grass S88 stimulator
and two SIU6 stimulus isolation units). Stimulation consisted of
a 500-ms, 200-Hz train of biphasic pulses, each phase 0.2 ms in
duration, negative phase leading. Current was measured by
means of the voltage drop across a 1 K� resistor in series with
the return lead of the stimulus isolation units. The current level
was adjusted until a clear, consistent, multijoint movement of the
arm was obtained, typically between 25 and 100 �A.

Detailed methods for measurement of arm movement are
provided in the supporting information. Briefly, the 3D positions
of points on the limb were measured by means of an Optotrak
3020 system (Northern Digital). This system tracked infrared

light-emitting diodes that were taped to the monkey’s hand and
arm. Based on these tracking data, eight degrees of freedom
were calculated: the elevation, azimuth, and internal�external
rotation of the shoulder joint; the flexion of the elbow; pronation
of the forearm; extension of the wrist; adduction of the wrist; and
grip aperture.

The monkeys were not killed at the termination of this
experiment; thus, the locations of the stimulation sites were
reconstructed through nonhistological means. The central and
arcuate sulci were located first by shining a bright light on the
dura during the initial craniotomy surgery. Both sulci were
clearly visible through the dura. The microdrive was mounted to
the recording chamber, and the locations of the visualized sulci
were measured with the tip of the guide tube. In this way, the
locations of the sulci were obtained in microdrive coordinates.

During the daily experiments, the measured location of the
central sulcus was confirmed to within 0.5 mm by recording and
stimulating to either side of the sulcus. Just posterior to the
sulcus, in primary somatosensory cortex, we observed the ex-
pected small tactile receptive fields on the contralateral arm and
hand and also the expected lack of effect of electrical stimula-
tion. Just anterior to the sulcus we obtained the expected low
stimulation thresholds in primary motor cortex. The location of
the arcuate sulcus was confirmed by stimulating just anterior to
it and obtaining no skeletomotor movements, but instead stim-
ulation-evoked saccadic eye movements. The location of both
the central and arcuate sulci were further verified by using the
pattern of cellular activity and silence obtained on long electrode
penetrations to reconstruct the arrangement of cortex and white
matter. The sites tested were located in the arm representation
in motor cortex and were within the anterior bank of the central
sulcus or on the cortical surface within 2 mm of the central
sulcus. They therefore lay within the boundaries of traditional
primary motor cortex. As detailed in the supporting information,
a preliminary analysis indicated that 89% of the studied neurons
responded significantly in relation to rotation of the shoulder or
elbow joint, indicating that the neurons were in the correct
portion of motor cortex. All neurons that were encountered by
the electrode and that could be held long enough for collection
of a full data set were included in the analysis.
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Supporting Text

Note on R2 values. All of the models of neuronal activity tested in this experiment

returned relatively low R2 values. The best performing model returned R2 values that

were typically below 0.4. However, these low R2 values should not be interpreted as

weak statistical support for the models. The expected R2 values will depend to some

extent on the design of the experiment.

To illustrate this point, imagine recording from a visually responsive neuron in V1 that

responds well to a line segment and is tuned to orientation, direction of motion, speed,

length of stimulus, the eye through which the stimulus is presented, and the luminance

contrast of the stimulus. Imagine testing the neuron with a set of stimuli that vary only in

orientation. No other stimulus attribute is varied. Under this condition, the firing rate of

the neuron will vary from trial to trial, and the variance will be largely attributable to the

orientation of the stimulus. A regression against orientation should return a high R2 value,

perhaps as high as 90%. This is because all other sources of variance have been

minimized. Such an experiment asks whether orientation tuning, when isolated, is

statistically reliable.

However, now imagine testing the neuron with a stimulus set in which all parameters are

free to vary. From trial to trial, the stimulus changes in orientation, direction of motion,

speed, length, the eye through which the stimulus is presented, and luminance contrast.

The firing rate of the neuron will vary from trial to trial, but now the variance will arise

from many sources. A regression against orientation should return a low R2 value,

perhaps in the 20–40% range, because orientation will account for only one part of the

total variance. This seemingly low R2 value, however, would not indicate a lack of

orientation tuning, or a miminal or unimportant orientation tuning. Rather, it would

indicate that orientation tuning accounts for a piece of the total variance, and that other

factors must account for the remainder of the variance. One would expect the regression

on orientation, even with a “low” R2 of 0.2, to be highly statistically significant. This

experimental design asks, in a varied stimulus set, (i) whether orientation tuning makes a



statistically significant contribution, and (ii) what proportion of the total variance of the

neuron stems from orientation tuning.

In the same manner, in the present experiment we tested (i) whether each model of motor

tuning made a statistically significant contribution to the pattern of firing of the neuron,

and (ii) how much of the total variance of the neuron stemmed from each model. For

example, one neuron, when tested on the end-posture-tuning model, returned an R2 value

of 0.38. The regression was highly significant (P < 0.0001). In this example, (i) end-

posture tuning made a significant contribution to the behavior of the neuron, and (ii) 38%

of the variance in the neuron’s firing could be attributed to end-posture tuning, whereas

the remainder of the variance must have been driven by other factors. Given the design of

the experiment (the inclusion of an unrestricted, naturalistic movement set), such low R2

values are expected. Particular attention, therefore, must be paid to the associated P value

to ascertain the statistical significance of the fit.

Measurement of Joint Angles. The positions of points on the limb were measured by

means of an Optotrak 3020 system (Northern Digital). This system tracks the 3D position

of infrared light emitting diodes (LEDs). Each LED could be separately tracked to a

spatial resolution of 0.1 mm. The position was measured every 14.3 ms. To create a

marker that could be detected by the Optotrak cameras from any angle, we glued five

individual LEDs together to produce an omni-directional marker ball. A marker ball was

taped to the monkey’s forefinger on the dorsal surface where it would not interfere with

grasping; on the thumb, again on the dorsal surface where it would not interfere with

grasping; on the back of the hand, between the knuckles of the third and fourth digits; and

on the lateral aspect of the elbow. In addition, 14 individual markers were taped in a

double ring around the monkey’s wrist, with seven markers per ring and a 1-cm spacing

between the rings. The wires were taped in a bundle to the underside of the arm and

draped behind the monkey. The primate chair was open at the front and side, allowing for

almost total range of movement of the arm. The monkey’s other arm, ipsilateral to the

electrode, was not studied with Optotrak markers. To ensure that this hand would not



reach for the fruit rewards during trials, or tear off the markers taped to the measured

hand, this untested hand was fixed to the side of the chair in an arm holder.

The double ring of 14 markers around the wrist was subject to a rigid body computation

to calculate the location and spatial orientation of the wrist. In this computation, for each

time point, a 3D rigid model of the double ring of markers was fitted to the measured

positions of the currently visible markers, using a least-squares method of optimal fit.

The orientation and position of the model could then be used to estimate the orientation

and center of the wrist. The center of the wrist was taken to be the mean position of the

14 points in the model.

The position of the shoulder in space was calculated by analyzing the position of the

elbow over time. Over many time points, the elbow described a portion of a sphere, the

origin of which was located at the shoulder joint. For each 3 min block of data, a shoulder

position was calculated by fitting a sphere to the data using a least-squares best fit

algorithm and using the center of the sphere as the shoulder location. Because the

shoulder is capable of small translational movements in addition to rotations, this method

of estimating shoulder joint location is approximate but was sufficient for the purposes of

this study. When the shoulder position was calculated multiple times over different time

segments, it varied within <3 cm.

Three shoulder angles were computed: the elevation; the azimuth; and the “twist” or

internal/external rotation of the shoulder joint. We also calculated the flexion of the

elbow; the pronation of the forearm; the extension of the wrist; the adduction of the wrist;

and the grip aperture. In total, eight degrees of freedom were calculated for the arm. This

model of the arm was verified by applying forward kinematics to estimate the position of

the hand. This calculated position of the hand matched the actual, measured position of

the hand to within an accuracy of 1.5 cm.

Description of Movements in the Data Set. During testing of a neuron the monkey was

allowed to move its contralateral arm freely to touch and explore parts of the primate



chair, to reach for small pieces of fruit held out on the end of forceps, to bring food to its

mouth, to retrieve food from its mouth, to hold food in central space to examine it, and to

rotate and explore food items. Occasionally the monkey also scratched at its skin or

scratched rhythmically at a portion of the monkey chair. The movement of the arm was

recorded through all of these behaviors. Different types of behaviors were not separated

in the analysis, partly because one type of behavior tended to grade into another type and

the distinction could only be made subjectively; and partly because the purpose of the

study was to include all possible arm movements in as large and naturalistic a range as

possible given the constraints of the primate chair.

For each neuron, the position of the hand in 3D space was tracked during a continuous

time interval ranging from 10 to 30 min. Separate movements were extracted from this

data set on the basis of a velocity analysis. Minima in the velocity were identified and the

intervals between minima were flagged as potential separate movements. To enter the

final data set, the movement had to be at least 0.15 sec in duration and the peak speed had

to be at least 20 cm per sec. These parameters seemed to successfully divide the data into

discrete segments that matched our subjective impression of separate hand movements.

Fig. 4 shows a typical movement set collected during testing of a neuron. This set shows

683 separated movement segments that densely sampled the workspace of the hand.

Vertically, the movements ranged from 29 cm below the mouth to 9 cm above the mouth.

Horizontally the movements ranged on the contralateral side (same side as the studied

arm, opposite side as the electrode) to 19 cm from the midline, and on the ipsilateral side

to 13 cm from the midline. In depth (direction along the monkey’s forward line of sight)

the movements ranged from 5 cm behind the level of the mouth (such as when the

monkey was reaching to its flank or to its ear) out to 21 cm in front of the mouth (normal

for a fully extended reach).

The average length of a movement was 9 cm (SD 6.6). The average hand speed was 26.7

cm/sec (SD 13.5). Each movement had a peak speed, and the average peak speed among

all movements was 46.2 cm/sec (SD 28.1).



For each movement we calculated a standard curvature metric, as follows. The straight-

line distance between the start and end of the movement was found. The total path-length

of the movement was found. The ratio of these two quantities provided a curvature metric

in which 1.0 corresponds to no curvature and smaller numbers correspond to increasingly

curved movements. The average curvature was 0.9 (SD 0.08), indicating that the

movements tended to be straight. In the figure, some movements appear to be highly

curved. This appearance is a result of collapsing a 3D movement into a 2D depiction in

which the long axis of the movement is not fully shown.

The distribution of movement directions was examined. For each movement we

calculated a direction by connecting the start point to the end point and obtaining the

azimuth and elevation angles. These directions were then plotted on a sphere. The

directions appeared to be relatively evenly distributed. The sphere was divided into 20

equal sectors, and the movement directions were distributed over these 20 sectors with all

sectors represented.

Preliminary Analysis of Neurons. To further specify the somatotopic portion of motor

cortex that was studied, we performed a preliminary analysis on each neuron. Using a

step-wise regression, we obtained the degree of correlation between the neuronal activity

and the velocity of each of the eight measured joints. If we were recording primarily in a

distal representation, we would expect to find significant regressions with distal joints

including hand aperture, wrist flexion, wrist adduction, and forearm pronation. If we were

recording primarily in a proximal representation, we would expect to find significant

regressions with promixal joints including elbow flexion and the three degrees of

shoulder rotation. Given the known overlap in motor cortex somatotopy, we expected to

find intermingled neurons related to both proximal and distal joints. The results indicated

that 89% of the neurons were significantly related to the proximal joints and 67% were

significantly related to the distal joints. These results indicate that the studied neurons

were in the forelimb representation in a region that emphasized the proximal joints over

the distal joints.



Direction Tuning. Each neuron was tested for direction tuning in the following manner.

For each movement, we calculated a mean firing rate of the neuron (spikes per sec during

the movement). Since the neuron was presumed to affect movement with a conduction

latency and a latency caused by the inertia of the arm, we shifted the analysis window for

the single neuron data with respect to the movement data by a specific temporal offset.

The appropriate offset for each neuron was estimated from the electrical stimulation data

from the same cortical site, and was the latency for the hand to move after onset of

electrical stimulation. This latency was typically about 70 ms.

Each hand movement was assigned a direction in Cartesian space based on the vector

connecting the beginning and end point of the movement. Firing rate was modeled as a

function of the angular deviation (∆θ) between this movement vector and a preferred

direction.

Firing rate = A cos (∆θ) + B.

A regression analysis was used to find the optimal preferred direction and coefficients,

following the method of Georgopoulos et al. (1). The regression analysis provided an R2

value indicating how much of the variance in neuronal activity could be attributed to the

direction-tuning model. The regression analysis also provided an F and P value indicating

whether the data showed a statistically significant trend in the direction of the model.

End-Point Tuning. For this model of neuronal tuning all data concerning the direction or

trajectory of the movement was discarded and only the end-point of the movement was

considered. Firing rate was modeled as a Gaussian function of these end-points in

Cartesian space. In the following equation, x1, x2, and x3 refer to the three Cartesian

coordinates of the end-point of the movement; P1, P2, and P3 refer to the coordinates of

the peak of the Gaussian; the standard deviations of the Gaussian around that peak are

indicated by σ1, σ2, and σ3; the height of the Gaussian at peak is given by A; and the

height of the Gaussian at lowest, or the estimated baseline firing rate of the neuron, is B.



A nonlinear regression technique (2) was used to fit this equation to the data for each

neuron.

Firing rate = Ae
( x1−P1 )2

2σ12 +
( x2−P2 )2

2σ22 +
( x3−P3 )2

2σ32 + B

End-Posture Tuning. This model followed the same general equation as the previous

model except that it involved the eight dimensions of arm posture space (x1 through x8)

rather than the three dimensions of Cartesian space. Firing rate was modeled as a

Gaussian function that had a peak at a specific, preferred posture. Again a non-linear

regression technique was used to fit the model to the data for each neuron.

Firing rate = Ae
( xi −Pi )2

2σ i
2i=1:8

∑

+ B

End-Posture Plus Trajectory. This model added a term to the end-posture model. The

movement of the arm through posture space was assigned an 8D vector that connected

the beginning posture to the end posture of the movement. A second vector was defined

connecting the beginning posture of the movement to the estimated preferred posture of

the neuron. The angular deviation ∆θ was defined as the difference in angle between

these two vectors. In this model:

Firing rate = (Ccos(∆θ) + D)(Ae
( xi −Pi )2

2σi
2i=1:8

∑

+ B)

Testing Artificial Neurons. To test the validity of the above regression models, we

generated artificial neurons. One artificial neuron was direction tuned. To generate the

neuron we used the hand movements of an actual data set, but replaced the firing-rate

data with artificially generated data. The data were generated using the direction-tuning



model, and then randomized noise was added to create a neuron that was noisily tuned to

a preferred direction. The neuron was then subjected to the regression analyses described

above. Fig. 5A shows the result. When tested with a direction-tuned model, the artificial

direction tuned neuron showed a mid-range R2 value consistent with its noisy tuning.

When tested with the other regression models, it showed near zero R2 values.

In a similar manner we generated an artificial neuron that was tuned to a final hand

location in space, and an artificial neuron that was tuned to a final posture of the arm. The

results, shown in Fig. 5 B and C, show that the R2 value for each type of neuron was

highest for the matching type of regression model and near zero for the non-matching

regression models. These tests indicate that the regression models were successful at

distinguishing neurons that had different types of tuning, with relatively little cross-

contamination between the different regression models.

Distribution of Joint Angles Preferred by End-Posture-Tuned Neurons. For each

neuron recorded from motor cortex, we used the end-posture regression model to obtain a

Gaussian fit to the data in 8D posture space. We then examined the distribution of

preferred end-postures among neurons. Not all neurons were sharply tuned in posture

space. To examine the distribution of those neurons that had clear preferred postures, we

ranked neurons by the sharpness of the Gaussian tuning function and arbitrarily chose the

50% of neurons that were most sharply peaked, thus the neurons for which the end

posture was most clearly specified. These neurons are represented in Fig. 6. Each

frequency histogram shows data for one joint. For most joints, neurons were tuned to a

range of different preferred angles. For some joints, especially distal joints, neurons were

more likely to be tuned to an extreme angle. Neurons tended to prefer a closed grip

aperture.
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Figure Legends for Supporting Online Material

Figure 4 (Figure 1 supplemental): Front view of 683 hand movements made during 15 min.

Each trail of dots = 1 movement measured at 14.3 ms intervals.  Monkey drawing shows

approximate scale and location of animal.

Figure 5 (Figure 2 supplemental): Analysis of artificially generated, noisy neurons.  A. Artificial

direction-tuned neuron tested on direction, end-point, and end-posture regression models.  B.

Artificial end-point tuned neuron tested on the same three models.  C. Artificial end-posture

tuned neuron tested on the same three models.

Figure 6 (Figure 3 supplemental): Distribution of end postures preferred by neurons.  Each graph

shows a frequency histogram for neurons that preferred specific values for joint angle and grip

aperture.
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